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Abstract

The SOAP Service Description Language (SSDL) is a SOAP-centric language
for describing Web Service contracts. SSDL focuses on message abstraction as
the building block for creating service-oriented applications and provides an ex-
tensible range of protocol frameworks that can be used to describe and formally
model Web Service interactions. SSDL’s natural alignment with service-oriented
design principles intuitively suggests that it encourages the creation of applica-
tions that adhere to this architectural paradigm. Given the lack of tools and
empirical data for using SSDL as part of Web Services-based SOAs, we identi-
fied the need to investigate its practicability and usefulness through empirical
work. To that end we have developed Soya, a programming model and run-
time environment for creating and executing SSDL-based Web Services. On the
one hand, Soya provides straightforward programming abstractions that fos-
ter message-oriented thinking. On the other hand, it leverages contemporary
tooling (i.e. Windows Communication Foundation) with SSDL-related runtime
functionality and semantics. In this thesis, we describe the design and architec-
ture of Soya and show how it makes it possible to use SSDL as an alternative
and powerful metadata language without imposing unrealistic burdens on ap-
plication developers. In addition, we use Soya and SSDL in a case study which
provides a set of initial empirical results with respect to SSDL’s strengths and
drawbacks. In summary, our work serves as a knowledge framework for better
understanding message-oriented Web Service development and demonstrates
SSDL’s practicability in terms of implementation and usability.
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Chapter 1

Introduction

} I find that the harder I work, the more luck I seem to have. ~

— Thomas Jefferson

Complex software systems are often constructed according to simpler and more
comprehensible abstract models and guidelines. One architectural style that
has garnered recent attention is service-oriented architecture (SOA) [1]. SOA
is a named set of coordinated architectural constraints that can guide software
developers during the creation of large-scale distributed software systems. Fun-
damentally, SOA follows the common practice of decomposing a complex prob-
lem into smaller, independent and thus more manageable abstractions. In an
SOA, these abstractions are autonomous units of logic called services. Services
use messages to communicate and exchange structured information among each
other while descriptions capture the form and patterns of how these interactions
can take place. Together, services, messages, and descriptions form the three
main components of a basic SOA [2].

Although service-orientation per se is neither a new nor a technology-depen-
dent paradigm, the advent and emergence of Web Services has reinvigorated
interest in the approach [3]. Indeed, Web Services offer a suitable technology
platform for realising service-oriented applications. By defining a set of stan-
dards and models, they enable the integration of independent, heterogeneous
components and make it possible to create a new class of interesting distributed
applications. Simply using Web Services, however, does not automatically lead
to service-oriented design [4]. As a matter of fact, Web Services technology can
likewise be used to create applications that adhere to other architectural princi-
ples which are less suitable for building Internet-scale applications. The design
of WSDL [5], for example, is procedure call-centric and can constrain Web Ser-
vices practitioners from adopting a more message-oriented mindset. Its focus on

1



2 CHAPTER 1. INTRODUCTION

operations as the primary abstraction for communication has resulted in a large
number of tools (e.g. [6, 7]), which generate code that shields network communi-
cation in order to make remote service invocations look like local method calls.
Web Service applications built in such ways are consequently not architecturally
different from RPC systems [8]. In other words, these systems are often tightly
coupled, brittle at distribution boundaries and limited in scalability [9].

In contrast, then, the SOAP Service Description Language (SSDL) [10] is an
XML-based language that describes Web Services in a message-oriented way. In
its crudest form, it can be seen as a direct language replacement for WSDL. Yet
unlike the latter, SSDL focuses on one-way SOAP messages [11], not operations,
as the building blocks for creating service-oriented applications. Moreover, it
provides mechanisms, known as protocol frameworks, which can be used to com-
bine messages into interaction protocols that define their expected relative or-
dering and thus enable protocol-based reasoning. In general, the message-centric
concepts underlying SSDL provide a more natural fit with service-oriented de-
sign principles than the operation-centric design of languages like WSDL. Intu-
itively, this suggests that SSDL inherently fosters the creation of loosely coupled
and scalable applications.

1.1 Thesis Focus and Contribution

Currently, virtually no data exists on experiences in implementing tool support
for SSDL or using the same as part of Web Services-based SOAs. Consequently,
this raises a number of questions that this study seeks to answer. At one end
of the spectrum, it is unclear if the approach proposed by SSDL is truly prac-
ticable. In other words, can sensible programming abstractions and runtime
support be provided that aid developers in building service-oriented applica-
tions without adding unrealistic development burdens. At the other end, we
can only speculate if SSDL indeed has significant benefits compared to the in-
cumbent approaches that exist for describing Web Services (e.g. in terms of
fostering service-orientation, reducing complexity, increasing semantic expres-
siveness, etc.).

Unfortunately, SSDL has not been widely adopted by the community. We
speculate that the main inhibitors to SSDL being adopted more widely is the
general lack of engagement by leading Web Services technology companies such
as IBM, Microsoft, Oracle, Bea etc. and the absence of tool support for creat-
ing and executing SSDL-based Web Services. There are neither tools nor pro-
gramming abstractions available that could assist developers in modelling and
implementing SSDL-based Web Services. Furthermore, no SSDL-aware run-
time platform exists, which is needed to realise the benefits of SSDL’s machine-



1.1. THESIS FOCUS AND CONTRIBUTION 3

processable message and protocol descriptions.

To that end we have developed Soya [12], a programming model and run-
time environment for creating and executing SSDL-based Web Services. The
development of Soya presented us with a number of non-trivial research and
engineering challenges, which we discuss in this thesis. In summary, Soya pro-
poses to address problems in the following areas of SSDL-based Web Service
development:

• programming abstractions: the efficient creation of SSDL Web Services ne-
cessitates straightforward programming abstractions that foster the lan-
guage’s underlying message-oriented practices. Most developers are fa-
miliar with synchronous method call semantics only. SSDL’s interaction
model, however, is asynchronous. The programming model must therefore
deal with this dilemma by providing abstractions that are easily adoptable,
even by developers who are not accustomed to working with asynchronous
interactions. In addition, it needs to provide mechanisms for capturing
contractual information (e.g. XML schema, message descriptions, proto-
cols, etc.) without adding unrealistic development effort;

• runtime support : an SSDL engine should exhibit the same features that
are commonly found in contemporary SOAP-processing middleware (e.g.
efficient processing of SOAP messages, support of prevalent Web Services
standards such as security or reliability, etc.). In addition, it must obvi-
ously provide functionality and semantics related to SSDL. This includes
message validation in terms of structure and ordering, state maintenance
by means of WS-Addressing [13], protocol-based message dispatching and
so forth. Finally, the runtime architecture must take SSDL’s extensible
protocol framework mechanism into account and ideally be independent
of the programming abstraction in use.

The main contributions of this work to the field of software research are
the design and implementation of a programming model and runtime environ-
ment for creating and executing SSDL-based Web Services, respectively. By
providing the community with this knowledge and infrastructure, we hope to
promote message-oriented Web Services design and motivate further research
in this direction. In order to validate the usability of Soya’s programming ab-
stractions and the proper functioning of its runtime, we apply it to a case study
in connection with the Australian lending industry. In addition to demonstrat-
ing its practicability, this research is important because it provides an initial
set of empirical results that differentiate Soya and SSDL from the prevalent
approaches.
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1.2 Thesis Structure

Chapter 2 provides an extensive and critical overview of relevant literature to ar-
ticulate the problem field to which this work applies. We follow a chronological
perspective of different architectural styles and practices for creating distributed
software applications. In particular, we emphasise Web Services technology as a
platform for building service-oriented applications. We also introduce concepts,
models and languages from the domain of protocol and workflow research. We
conclude the chapter with a presentation and discussion of SSDL. In Chap-
ters 3 and 4 we give an in-depth presentation of Soya’s programming model
and runtime environment, respectively. These constitute the original empirical
work of the thesis. First, we elaborate on how Soya helps developers to model
SSDL-based Web Services. Then, we follow with a detailed explanation of how
the various runtime components work. Chapter 5 presents a case study in the
creation of a service-oriented system in connection with the Australian lending
industry. We show how the system can be realised with the aid of Soya and
SSDL. Additionally, we re-model the application using incumbent approaches
and compare the results. In Chapter 6 we discuss remaining open issues, which
had not been addressed in previous chapters. Chapter 7 concludes the thesis
by summarising the findings and contributions of our work and indicating some
directions for future research.



Chapter 2

Background

} The task is not so much to see what no one yet has seen,
but to think what nobody yet has thought,

about that which everybody sees. ~

— Arthur Schopenhauer

Over the years, architectural styles and best practices for creating software have
evolved and changed many times. This has required software engineers to con-
tinuously adapt both technology and mindset. At the same time, the large
number of existing paradigms, principles, tools and so forth can also be confus-
ing or even deceptive. In this chapter, we discuss some relevant architectural
styles and technologies and their implications in terms of creating Web Service
applications. Although this comprises a review of existing relevant literature, it
holds conceptual originality. Specifically, it produces the framework and ratio-
nale on which we built Soya.

2.1 RPC and Distributed Object Technologies

In 1976, James E. White from the Standford Research Institute published an
RFC1 containing details about what he called the “procedure call model” [8].
The ideas described in his original RFC 707 became later known as remote
procedure calls (RPC). White’s intention was to abstract and hide network
complexity in order to provide an environment that looked familiar to software
developers who were used to writing non-distributed applications. In the late
1970s, RPC replaced client-server database connection designs. In the 1990s,
RPC technologies such as CORBA [14] and DCOM [15] emerged, which pro-
vided a complete distributed system architecture. Upon the arrival of the World

1RFC stands for “Request for Comments”

5
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Wide Web in the mid-to-late 1990s, Internet technology was incorporated into
distributed architectures and custom client components were often replaced with
browsers. In these architectures, proprietary RPC protocols were consequently
replaced by HTTP [16]. Some years after, Java followed with its object equiva-
lent of RPC called Remote Method Invocation (RMI) [17] and later Enterprise
Java Beans (EJB) technology [18], which likewise provided significant additions
to the original RPC. Internally, these components communicated via propri-
etary APIs while still using one or the other form of RPC for communicating
across program boundaries.

All these technologies promised to make developers’ lives easier by hiding
tedious network communication code and making remote objects look like lo-
cal objects, in accordance with White’s original ideas. This was achieved by
generating intermediary proxy and stub classes that shielded and handled the
network communication. During proxy generation, the expected interactions be-
tween components were taken into account by statically embedding references
among each other into the proxy code. Even though many software projects
have successfully applied RPC-based technologies over the last two decades,
these technologies have a range of shortcomings. As a matter of fact, it has
been known for several years that RPC is not ideal for Internet-wide computing
(e.g. [19, 20, 21, 22]).

2.1.1 Shortcomings

2.1.1.1 Programming Model

Back in 1994, Waldo et al. suggested that “objects that interact in a distributed
system need to be dealt with in ways that are intrinsically different from ob-
jects that interact in a single address space”2. According to the authors, the
vision of unified objects cannot be successfully applied to large distributed sys-
tems because it tries to conceal fundamental dissimilarities between local and
remote communication. This includes differences in network latency, memory
address space, concurrency and partial failure scenarios. Consequently, Waldo
et al. suggested that calls across a network must be clearly distinguished and
treated differently from local calls within the same address space [9]. Yet RPC
programming abstractions conceal these dissimilarities, and do thus not allow
developers to differentiate between them.

2Waldo et al., “A note on distributed computing”, 1994
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2.1.1.2 Interface Complexity

RPC-based applications tend to be tightly coupled and thus limited in scala-
bility. Their components often expose a large number of complex, fine-grained
and diverse interfaces that mirror implemented procedures or object structures.
Also, components are connected in a point-to-point fashion, resulting in many
dependencies among each other. As the number of application components in-
creases, the number of possible connections grows exponentially. As a result,
keeping track of the semantics of each component’s interface becomes increas-
ingly difficult as Vinoski notes in [23]. In practice, making changes to interfaces
can be virtually impossible, as it may imply updating a large number of depen-
dent components; all the more, if components are scattered across organisational
or trust boundaries. Fowler remarks in [21] that these problems are often not
significant within single n-tier applications but become so when different inde-
pendent applications are integrated.

2.1.1.3 Synchronous Communication

Despite its many advantages, synchronous communication has also a number of
drawbacks, in particular when used in highly distributed environments. Syn-
chronous communication is not well suited for long-running activities, because
clients keep connections open while waiting for results. As a consequence, servers
need to maintain large numbers of concurrent connections, which affects both
their performance and complexity. Further, synchronous calls make components
dependent on the availability of others. In a distributed environment, such as
the Internet, where it is a reality that network links fail or applications become
unavailable, this can disrupt the entire application.

2.1.1.4 Enterprise Application Integration (EAI)

RPC couples applications further in terms of middleware technology that needs
to be the same on both ends of communicating components. Still, we men-
tioned above that many applications have been built successfully with RPC
technologies. These achievements, however, were mostly limited to environ-
ments characterised by platform homogeneity and predictable latencies, such as
the corporate Internet [20]. Yet in order to create truly large-scale applications
that span organisational, trust and geographical boundaries, where networks are
latent, message loss is common, transmission speed varies and so forth, RPC is
not an apt technology. Hohpe and Woolf sum it up accurately in [21] by saying
that while RPC could be used to distribute n-tier applications, it is not suitable
for integrating independent applications.
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2.2 Messaging

Messaging is an architectural style in which independent applications commu-
nicate with each other remotely by exchanging structured data called messages.
Based on the message content, the receiving application performs appropriate
actions and potentially sends new messages back. Because the applications in-
teract in an asynchronous manner, they are inherently loosely-coupled3, more
dynamic and more reliable.

In message-oriented systems, the lines between client and server (or sender
and receiver, producer and consumer, etc.) are blurred. Both sides can freely
send and receive messages in either direction and their roles can thus change
during the course of a single conversation. The distinction is purely conceptual
and only makes sense in connection with the semantics of the message exchange.

Besides enabling remote communication, messaging systems can overcome
platform and language issues by providing universal communication interfaces
for different technologies. Additionally, asynchronous communication can im-
prove performance because the sender of a message does not need to wait for the
receiver to process it. Instead, it can perform other work and therefore increase
its throughput. Finally, messaging interactions are more reliable than standard
RPC. If, for example, the network link or the receiver is not working properly,
a messaging system tries to resend the message until it succeeds. Hohpe and
Woolf give a more extensive list and a description of the advantages provided
by messaging in [21].

As a result, messaging has been the favourite approach for integrating au-
tonomous and heterogeneous applications into large-scale enterprise systems for
a number of years [3, 24]. In fact, messaging solutions have been successfully
applied in a wide range of domains including the financial sector, which is known
for its high performance and reliability requirements. The Society for World-
wide Interbank Financial Telecommunications (SWIFT), for example, processed
more than 2 billion messages per year during 2003 [25].

Although asynchronous messaging architectures are powerful, they also in-
troduce new challenges. One of them is the significant differences in the design
approaches that are associated with asynchronism. Because developers are nor-
mally familiar with synchronous method-call semantics, the idioms and pecu-
liarities of asynchronous communication requires working with a more complex
event-driven programming model. Further, there are issues relating to message
ordering and synchronisation. Again, an extensive description of the challenges
introduced by asynchronous messaging is given by Hohpe and Woolf in [21].

3The fewer assumptions two applications need to make about each other in order to ex-
change information, the less coupled they are.
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2.2.1 Asynchronous Calls

Interactions in software systems are often characterised in terms of blocking
(synchronous) or non-blocking (asynchronous) behaviour. In a synchronous
interaction, a process calling a sub-process blocks and must wait for the response
from the sub-process before it can proceed. Synchronous calls also block when
the called process executes in an independent, possibly remote environment.
In an asynchronous interaction, conversely, the calling process does not need
to wait for a response and can proceed while the sub-process executes. This
difference in semantics is illustrated in Figure 2.1.

Blocking

Process A

Process B
call return

blocked

time

Non-Blocking

Process A

Process B
call

time

Figure 2.1: Comparison between synchronous and asynchronous interaction se-
mantics. Adapted from [21].

Asynchronous communication decouples processes and can improve perfor-
mance. However, it is generally more complex because processes run concur-
rently and their exact execution sequence can no longer be determined. Addi-
tionally, results of an asynchronous call must be communicated to the calling
process somehow (e.g. via a callback or shared variables) and then be associated
correctly with the context in which the call was made.

Undeniably, synchronous behaviour has advantages in terms of simplicity
and makes perfect sense in many situations, such as invoking operations on
local objects. However, we have reasoned earlier that communication across a
network is fundamentally different from interactions among objects in the same
address space. Abstracting the former into the simple semantics of local method
calls can thus be deceptive. Synchronous communication among distributed
applications couples them in a tight manner. As a result, applications integrated
in this fashion have more complex dependencies and are harder to maintain. In
contrast, applications that communicate by means of asynchronous message
exchange can operate more independently of each other. Consequently, the
integrated application components will be more loosely coupled.
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2.2.2 Message-Oriented Middleware (MOM)

The systems that provide messaging capabilities are known as Message-Oriented
Middleware (MOM) (e.g. [26, 27, 28]). These systems coordinate and manage
the sending and receiving of messages between applications, which are connected
using virtual pipes called message channels.

MOM systems normally connect applications in a point-to-point fashion,
where a sender places a message into a queue. Normally this is done in a non-
blocking fashion. Then, the middleware moves the message from the sender
to the receiver, which extracts it from the other end of the queue and starts
processing it. If the receiver is not available, the system retries the delivery
until it succeeds. The receiver can obtain the message in either a blocking
or a non-blocking fashion; by either waiting for a new message or providing a
callback function that is invoked when a new message arrives. This process is
illustrated in Figure 2.2.

Sender

Message Channel

Receiver

Messaging System

Figure 2.2: A messaging system that connects two components through a mes-
sage channel. Adapted from [21].

Unfortunately, the point-to-point model requires communicating applica-
tions to be directly connected with each other. This design is thus relatively
static and inflexible. Further, the number of connections (i.e. queues) grows
exponentially with the number of integrated applications. Because of its many
connections between applications, this kind of design is often referred to as
spaghetti architecture.

2.2.3 Message Brokers

Message brokers address the limitations of basic MOM systems by extending
them with centralised message routing, filtering and processing capabilities. A
broker thus basically acts as a Mediator [29] between the integrated applications.
For example, the publish-subscribe messaging model, which is supported by vir-
tually every message broker, enables many-to-many communication over one
channel. Essentially, the publish-subscribe paradigm has the same underlying
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principle that is described by the Observer pattern in [29]. Subscriber applica-
tions can subscribe to topics, which are basically logically named queues. When
a new message is published to a topic, the middleware notifies each subscribed
application by sending it a copy of the message.

Additionally, message brokers can centralise message content transforma-
tions. As a result, heterogeneous applications can send messages in their own
format, which are then transformed by the broker into a unified format.

By introducing a message broker, the complexity and number of communi-
cation interfaces in the endpoints is reduced to a great extent. Figure 2.3 shows
an architecture with a message broker that is often referred to as a hub and
spoke model, because of its similarity to a bicycle wheel.

Message Broker

Figure 2.3: Using a message broker reduces complexity between applications at
integration points. Adapted from [24].

Although a lot of the complexity is captured in a central place and message
broker products normally include powerful tools to describe routing or transfor-
mation logic the approach still has a number of drawbacks. First and foremost,
the spaghetti architecture still exists inside the broker as visible in Figure 2.3.
Second, placing application logic into the broker can make applications more
difficult to debug and maintain. Third, brokers are potential performance bot-
tlenecks, because all messages flow through a central point.

Despite their benefits and success in corporate Intranets, MOM systems are
not ideal for Internet-wide application integration. On one side, homogeneous
middleware platforms are required to connect applications. On the other side,
the middleware needs to be placed – as the name suggests – “in the middle”
of the integrated applications. When applications exceed organisational bound-
aries, this often causes practical problems, the solutions to which aren’t only of
a technical nature. It is very likely that companies do not have the same kind
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of MOM systems and are not able or willing to change them. Further, it raises
security issues, as one company needs to access another companies middleware
infrastructure.

2.3 Service-Oriented Architecture (SOA)

Service-oriented architecture (SOA) [1] is a recent architectural style which
guides software architects during the creation of large-scale distributed soft-
ware systems4. Although the fundamentals underlying SOA are not at all new
and some even claim that they are as old as trade and the commercial mar-
ketplace itself [1], the emergence of Web Services technology has clearly rein-
vigorated interest in service-oriented principles. Nevertheless, SOA per se is a
technology-agnostic paradigm and can potentially also be realised using other
implementation strategies. Indeed, Sprott and Wilkes [30] claim that distributed
architectures were early attempts to realise SOAs and that the notion of service
is an integral part of component thinking.

A lot has been written about SOA but often with a strong inclination towards
Web Services technology (e.g. [31, 32, 2, 33]). A more puristic attempt to
define a common language and understanding of SOA independent of technology
was realised by the Organisation for the Advancement of Structured Standards
(OASIS), which defines SOA as follows:

“Service Oriented Architecture (SOA) is a paradigm for organising
and utilising distributed capabilities that may be under the control of
different ownership domains.”5

Fundamentally, SOA follows the common practice of decomposing a complex
problem into smaller, independent, more manageable abstractions. In an SOA,
these independent and autonomous units of logic are called services. Services
are higher-level abstractions that provide capabilities which other services can
use without knowledge of how they were provided. Services use messages to
communicate and exchange structured information among each other while de-
scriptions capture the form and patterns of how these interactions take place.
Together, services, messages, and descriptions form the building blocks of a
basic SOA [2].

4It has been argued that the naming of SOA is unfortunate because discussions relating
to it often involve areas such as business design or delivery processes, which exceed the scope
of architecture. Some authors have thus suggested to use the term Service Orientation (SO)
instead [30]. On account of its widespread use in the field of software architecture and be-
cause this thesis focuses on software development, we will nevertheless use the three-letter
nomenclature.

5OASIS, “Reference model for service oriented architecture v 1.0”, Section 2.1, 2006
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For two services to be able to interact, they have to be aware of each other’s
existence. This requires that a service consumer either knows directly where
the service provider is located or that it has some means to locate a suitable
service provider that can satisfy its needs [1]. In the latter case, some sort of
discovery mechanism (e.g. service registry) is needed to bridge this information
gap. Figure 2.4 shows how a service provider publishes its description to a
registry that can then be located and used by a service consumer.

Registry

Service

Consumer

Service

Producer

1. Publish2. Look up

Interact3.

Figure 2.4: A basic SOA. Service producers publish their descriptions in reg-
istries, helping service consumers to discover and subsequently interact with
them.

2.3.1 The Four Tenets of Service Orientation

Although there is no general consensus what an SOA exactly is, many authors
(e.g. [34, 35, 36]) agree that a typical SOA reflects the following four fundamental
tenets proposed by Don Box in [37]:

Boundaries are explicit. In an SOA, services communicate through the ex-
change of messages across service boundaries, which are well-defined and
explicit. Services have no knowledge about what is behind a boundary,
which keeps service implementations private and decoupled from other
services. Because services span separate processes, trust domains or geo-
graphical boundaries, each boundary crossing is potentially expensive in
terms of processing overhead, performance penalties or complicated fail-
ure scenarios. For this reason, inter-service communication must be con-
sciously distinguished from local method invocations. By making bound-
aries formal and explicit, developers recognise this difference between local
and remote communication.

Services are autonomous. Services are self-governed and fully control the
logic they encapsulate. They are modular building blocks that do not
require knowledge of each other’s internal workings in order to interact.
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As a result, services can evolve independently from each other as long as
they do not alter their public contracts. Moreover, as the topology of a
service-oriented system is expected to change over time, adding, upgrading
or removing services should not disrupt the overall system.

Services share schemas and contracts, not classes. Services maintain im-
plementation independence by exposing only schemas and contracts that
are expressed in a platform-neutral format. Schemas define the struc-
ture of messages a service can receive or send, while contracts determine
the mechanics of these interactions. Together, schemas and contracts are
shared beyond service boundaries.

In [38], Helland premises that data residing inside services is actually dif-
ferent from data residing outside services in many essential points. He
argues that the only way these boundaries can be crossed is by means of
messages carrying outside data to the inside or vice versa and that after
receiving or before sending messages it lies within a service’s responsibil-
ity to cope with the necessary transitions. He concludes that different
technologies (e.g. SQL and object-oriented languages for inside data and
XML [39] for outside data) must be used to allow for the different char-
acteristics that apply to inside and outside data.

Compatibility is determined based on policy. Besides using schemas and
contracts for agreeing on structural compatibility in terms of messages
and exchange sequences, services might have further constraints on the
semantics required for communication to take place. Therefore, both re-
quirements and capabilities are expressed in a machine-readable policy
description. This separates the description of a service’s behaviour from
the specification of constraints for accessing it.

Despite ongoing and often nearly religious debates about architectural styles
(e.g. REST vs. SOA [40]), it has been widely accepted that SOA provides a
flexible and useful approach to manage the complexity that arises when devel-
oping large-scale distributed software systems (e.g. [31, 35, 34, 41, 42]). For this
reason, we are not investigating SOA further at this point but will resume the
topic to some extent later in conjunction with our discussion on Web Services
in Section 2.6.

2.4 REpresentational State Transfer (REST)

REpresentational State Transfer (REST) is an architectural style for describing
distributed hypermedia systems such as the World Wide Web. Indeed, REST
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was developed as an abstract model of the Web architecture, or more precisely
a model of how the Web should work [43]. The term was coined by Fielding in
his doctoral thesis in 2000 [44], just shortly after the first Web Services-related
work had started6. The fact alone that the largest distributed software system,
the World Wide Web, is built in a RESTful way, justifies mentioning REST in
this thesis. Yet we are particularly interested in REST because many argue that
the principles it advocates can and should likewise be applied to Web Service
architectures. As a matter of fact, there have been ongoing debates splitting the
Web Services community into different camps. One side advocates the creation
of Web Services based on REST concepts using mainly HTTP and XML. The
other side maintains that Web Services should be implemented using SOA and
the WS stack (i.e. SOAP and other WS-* protocols) [40].

2.4.1 Rationale

REST defines a set of architectural constraints that are intended to increase
performance and scalability of distributed hypermedia systems. In REST, the
world is perceived as a collection of resources which are each named with a
unique identifier (e.g. a URI [46]). Interactions occur between clients and servers
in a pull-based style and involve exchanging representations of resources at a
given state (i.e. state transfer). In the case of the World Wide Web, a client
could, for example, send a HTTP GET request to a server, which in turn sends
back a representation of the resource expressed in HTML. Of course, the resource
could also be represented as XML, as a picture, as plain text and so forth. Every
resource is accessed through a uniform interface that defines a fixed set of verbs
(e.g. GET, PUT, UPDATE, DELETE), which allow clients to interact with it.
Other REST constraints require that servers are stateless, content is cacheable,
components can be layered and so forth.

2.4.2 Uniform Interfaces

RESTful applications work with uniform interfaces. In contrast, RPC-oriented
systems, including most current Web Service architectures, tend to have spe-
cialised verbs for each interface or service, respectively. As we have seen in
Section 2.1.1.2, complex interfaces have been a major obstacle for creating scal-
able distributed applications in the past. In REST this issue does not exist
because all interfaces are described with a fixed number of verbs. As a re-
sult, RESTful applications must focus more on the exchanged messages. Not
surprisingly, REST promotes the notion of self-describing messages [44].

6Box et al. released SOAP 1.0 in November 1999 [45].
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Although most of today’s Web Services expose specialised and diverse op-
erations, there are also some Web Service practitioners that advocate a more
RESTful approach to Web Service interfaces. The MEST architectural style,
described in the next section, for example, constrains Web Services to only one
logical operation, which effectively eliminates interface complexity.

2.4.3 Messages and Data Representations

Despite the fact that interfaces in RESTful architectures are uniform, the data
which is exchanged between them remains variable. Messages can contain data
in different standardised formats that are specified within the message itself. In
HTTP, for example, the content-type header can be used to inform the client in
what format the data inside the message is represented. Since many formats are
standardised and supported by most web browsers, they can easily be displayed
or processed.

2.4.4 Resources or Services?

Clearly, Web Services have been successfully designed using either a RESTful or
a service-oriented approach and it is, in fact, unclear if one approach is generally
better than the other. Vinoski discusses differences between the two schools of
thought to some extent in [40], but without coming to a decision that would
clearly favour one over the other. Zur Muehlen et al. did a comparison in the
context of choreography [47]. Although they used a superseded version of SOAP
and chose an RPC interaction model (see Section 2.6.5.1), their paper similarly
did not seem to reflect a distinct inclination towards either approach.

Amazon.com, for example, provides both REST and SOAP interfaces to
access their Web Services [48]. Remarkably, 85% of developers in this example
are apparently using the REST interface, whereas only 15% are interacting
with the service using SOAP [49]. The high percentage of REST interface users
in Amazon’s statistics, however, might be due to the fact that browser-based
clients are a fairly natural way in which to interact with their Web Services.

The fact that the World Wide Web works is a solid argument that REST
principles are sound for creating at least certain types of distributed systems.
Yet we are not aware of the existence of RESTful Web Service applications
that implement some of the more advanced features Web Services can provide,
such as transferring messages via intermediary nodes and different transport
protocols. Also, Web Service applications are normally not implemented as
hypermedia systems. Time, more research and further practical work will tell
if one of the two approaches is indeed more suitable.
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2.5 MESsage Transfer (MEST)

MESsage Transfer (MEST) is an architectural style that views distributed ap-
plications only in terms of messages that are transferred between services. The
original authors of MEST claim that it “is for service-orientation and Web Ser-
vices what REST is for resource-orientation and the Web” [50]. Despite the pun,
MEST is actually not very similar to REST. In terms of commonalities, both
styles particularly advocate uniform component interfaces and self-describing
messages.

2.5.1 One-Way Messages and Interaction Protocols

In MEST, interactions between services are purely modelled as one-way mes-
sages that are exchanged among services in a loose and asynchronous manner.
Using one-way messages as the fundamental building blocks, they can be com-
bined into simple patterns and sophisticated interaction protocols that describe
the interaction behaviour of applications (see Section 2.7). MEST perceives
messages as independent, self-contained units of information that do not con-
vey details of underlying APIs or transport protocols. Accordingly, it expects
applications to reason and act solely based on message’s content.

2.5.2 Logical Operation

Recognising that many developers are familiar with the semantics of operation
abstractions, MEST provides the concept of a logical asynchronous operation
called ProcessMessage(). However, this does not mean that services actu-
ally implement this method. The notion is purely conceptual and should be
perceived as a way to help convey the basic concepts underlying service com-
munication. In fact, the semantics associated with executing this method is
equivalent to the transfer of a message to a service combined with the implicit
request to process it. Of course, the realisation of the message transfer changes
with respect to the underlying transport level (e.g. HTTP POST, FTP PUT,
TCP send/recv, SMTP DATA). Yet this does not affect the higher-level ab-
stractions used in MEST. Figure 2.5 illustrates this view graphically.

2.6 Web Services

The focus of this thesis is to investigate SSDL – a language for describing Web
Services. Consequently, the latter form the conceptual framework to which
this research applies. A lot has been written about Web Service concepts and
technology in the past few years (e.g. [51, 52, 3, 53, 54, 2]). Rather than giving
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Figure 2.5: Services communicate with each other in a loose and asynchronous
manner by exchanging one-way messages. This is abstracted by invoking a single
logical operation that is uniformly present on all services (rectangles).

an exhaustive overview of Web Services, we focus only on the aspects most
relevant to our work.

2.6.1 Defining Web Services

At the end of 2004, the World Wide Web Consortium’s (W3C) Web Services
Architecture working group (WSAWG) produced a note on Web Services ar-
chitecture [4]. The document identifies and abstracts characteristics common
to most Web Service applications and explains their relationships among each
other in general terms. Moreover, it provides a definition of what a Web Service
is and a common vocabulary about Web Service concepts.

Rather than using the W3C’s definition of Web Service7, however, we will
use our own definition, as it reflects our personal view more aptly:

“A Web Service is a software system designed to support interop-
erable machine-to-machine interaction. This is achieved through
exchanging messages over an arbitrary number of network and ap-
plication protocols. Normally, a Web Service exposes a machine-
processable contract that captures the mechanics of how other sys-
tems can interoperate with it.”

2.6.1.1 Web Services are XML Processors

In [20], Vogels proposes that Web Services can be viewed as XML processors
that send and receive XML documents over a combination of transport and
application protocols. This view is illustrated in Figure 2.6. Upon receiving a
message, the Web Service processes it, executes some application logic based

7W3C, “Web services architecture”, Section 1.4, 2004
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on the message content and possibly constructs a new message, which it drops
back onto the network.

Message Processing

Application Logic

Resources

Web Service

Figure 2.6: Web Service seen as an XML message processors. Adapted from [34].

In fact, this behaviour is quite similar to how businesses or people commu-
nicate in the real world. Imagine a company C1 that wants to order some items
from another company C2. To do so, C1 fills out an order form (i.e. message)
with the order details (i.e. message content) and posts, faxes or emails (i.e.
transport protocol) it to C2. C2 in turn receives and reads the message (i.e.
message processing) and forwards the order request to an internal department
in order to deal with it (i.e. application logic). Unfortunately, the department
realises that it is currently out of stock and thus writes a letter back to C1,
saying that it is currently unable to deliver the requested items. C1 receives the
letter, reads it and so forth.

2.6.1.2 Web Services are Interoperability Standards

Note that in the above example, there are no notions like operations, invocations,
interfaces, etc. All the actions are performed solely based on the information
contained in the message. Of course, there are some implied semantics that
correspond to the ones above and we need to make sure, for example, that the
other party understands our request. Writing a letter in Japanese to an Italian
company might not lead to the expected result. Likewise, sending an order
for semiconductor parts to a clothing warehouse would probably not yield the
desired result. In a similar way, Web Services need to ensure that exchanged
messages are mutually understood. For this reason, Web Services technology
defines open standards that enable different heterogeneous applications to in-
teroperate. During the last few years, Web Services have matured into a com-
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moditised platform and it is widely believed that they can significantly advance
worldwide interoperable distributed computing [20].

2.6.1.3 Web Services enable SOA

Although we said earlier that SOA is an implementation-agnostic paradigm,
Web Services have received wide acceptance as a technology for realising SOAs.
The Web Services framework provides standards and models that are conceptu-
ally aligned with SOA. This includes the abstract notion of service in addition
to specifications relating to service description and discovery, messaging, service
composition, quality of service (QoS) and so forth.

Yet as reasoned earlier and noted by the W3C in [4], using Web Services
technology alone does not imply that any given software architecture will mag-
ically become service-oriented. Wrapping and exposing application objects as
Web Services, for example, is a practice commonly promoted by many toolk-
its. In [41], Vinoski discusses some of the problems that are associated with
this approach, including semantic mismatches, data type mapping and state
management issues, limitations in scalability, performance and so forth.

2.6.2 Do we need Web Services?

Many technologies have been applied successfully in creating distributed sys-
tems and integrating applications. Yet all of them have always posed restric-
tions on their environment (e.g. low latency networks, homogeneous platforms,
etc.) [20, 3]. This prevented them from achieving the ubiquity that the World
Wide Web has. Web Services are another step in the evolution of distributed
systems engineering and are hoped and believed to enable interoperability and
application integration on a global scale.

Conventional middleware such as MOM or RPC (see Section 2.2 and Sec-
tion 2.1) limits large-scale integration across organisational, trust or geograph-
ical boundaries for several reasons. MOM approaches integrate existing ap-
plications through a central point of access. This inevitably raises logistical,
political, confidentiality and other issues that hinder the practicability of this
approach. RPC-style integration efforts, on the other hand, integrate applica-
tions directly in a point-to-point fashion. This implies that connected parties
individually agree on a common infrastructure, data format, protocol, etc. In
practice, however, different parties might want to use diverse protocols, formats
and infrastructure (e.g. corporate policy, existing infrastructure, political mo-
tivations, etc.). This results in the creation of hard-to-maintain heterogeneous
systems in addition to the issues discussed in Section 2.1 and Section 2.2.

Web Services aim to solve these problems by providing open interoperability
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standards, which enable application composition and integration irrespective of
underlying technology, implementations and platforms. As a result, applica-
tions can be created that transcend organisational or geographical boundaries,
network protocols and component heterogeneity.

2.6.3 Web Services Architecture

2.6.3.1 First Generation Web Services

The Web Service architecture is based on a set of standards and specifications
that provide a framework to build interoperable applications on top of existing
network protocols. The standards are notably based on XML in order to achieve
platform and language independence8. According to several sources (e.g. [51, 53,
32]), the early Web Service architecture consisted of three main specifications.
They were SOAP [11], the Web Services Description Language (WSDL) [5]
and the Universal Description, Discovery, and Integration (UDDI) directory.
SOAP provided the semantics for communication, WSDL defined a vocabulary
to describe the capabilities of a Web Service in a machine-processable format and
UDDI specified how to publish and discover information about Web Services.
Figure 2.7 shows how the three specifications relate. Note that this architecture
is congruent with the basic SOA we defined in Section 2.3.

UDDI

WS WS

1. Publish WSDL2. Look up WSDL

3. SOAP

Figure 2.7: First generation Web Services architecture.

2.6.3.2 WS-*

Today, the relationship between these basic specifications is commonly known as
first generation Web Services architecture [32]. This architecture had a number
of limitations and did not cover more advanced topics such as security, reliable
messaging, transactions, service orchestration and so forth [55]. These issues
were addressed in subsequent iterations by additional specifications that are

8As a matter of fact, many refer to XML as the lingua franca of Web Services.
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often collectively referred to as WS-* [56]. Figure 2.8 depicts the key WS-*
specifications and their interrelationships in a schematic way.
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Figure 2.8: Schematic overview of the WS-* architecture. The transport layer is
not actually part of the WS-* specifications, but nevertheless shown for clarity.
Adapted from [55, 56]

The number of specifications is large and not all of them have been im-
plemented or have become actual industry standards. Also, because specifica-
tions have been written by different authors (i.e. companies), various standards
co-exist that address similar problem domains. Vinoski discusses this prob-
lem in [57], observing that no specification standardisation has yet occurred
and that the vast number of (often overlapping) specifications can be confusing
(e.g. [58, 59]). This is aggravated by the fact that no clear common guidelines
exist that could help the community in implementing Web Service systems.
Although the W3C has produced a note on Web Services architecture [4], it
describes only some architectural areas and not how the WS-* specifications fit
into the overall architecture – mainly because the notes predates most of the
WS-* specifications.
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2.6.3.3 Web Service Concepts and Engagement

Still, the W3C note [4] defines characteristics common to most Web Service
applications at an abstract level. This includes the identification of important
concepts and how they relate to each other. One of them is the general process
of how two Web Services engage in a conversation, illustrated in Figure 2.9. We
will use this example in the following paragraph to explain some fundamental
concepts.

Because Web Services can be both clients and servers in the traditional
sense, we normally use these terms more out of convenience than correctness.
For that reason, two interacting Web Services are more accurately referred to
as requestors and providers. Interaction is typically facilitated through some
agent (e.g. software built on middleware such as Axis [6], XFire [60], WCF [61],
etc.). Before interaction occurs, however, the two parties need to agree on the
semantics and mechanics of the subsequent interaction. This information is
used to configure, build or generate agents that know how to interact with each
other. Some of this information is typically captured in machine-processable
documents such as WSDL descriptions [5] or WS-Policy files [62]. Other in-
formation, however, might not be of machine-processable, explicit or written
nature but merely exist in an implicit, oral or human-oriented form. Clearly,
it is desirable to have machine-processable Web Services descriptions that are
semantically rich enough to capture every aspect of service-level agreement and
interoperation in order to enable full automation. Over the last few years,
languages and specifications have emerged that aim to describe the mechan-
ics of message exchange more accurately as part of Web Service descriptions
(e.g. [63, 64, 10]). Other approaches go even further and try to infuse different
types of semantics (e.g. data, functional, non-functional, execution) into Web
Services (e.g. [65, 66]). Still, the results of this early research have not yet been
widely consolidated into current Web Service development practices. As a mat-
ter of fact, most of today’s Web Service architectures still rely on information
of one sort or the other that cannot be conveyed in machine-processable ways.

2.6.4 SOAP

SOAP [11] is the communication protocol that enable Web Services to exchange
data in a standardised way9. SOAP is transportation agnostic and can thus
be used over a number of underlying application or network protocols such as
HTTP, TCP, FTP, SMTP, JMS and others.

9The acronym originally stood for “simple object access protocol”, which was a bit of a
misnomer, since it was neither simple nor object-oriented. For this reason, the W3C decided
in 2001 to just stick with “SOAP”.
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Figure 2.9: The general process of two Web Service engaging in a conversation.
Adapted from [4].

The main goals when creating SOAP were to make it interoperable, self-
describing, simple and extensible [67]. The first two goals have been accom-
plished by using XML as SOAP’s defining language. Simplicity has been re-
alised by giving SOAP messages a straightforward structure that consists of
an envelope containing zero or more header elements followed by one or more
body elements. Finally, headers provide the means to extend the SOAP model
in a decentralised and modular way. In fact, headers have become an im-
portant mechanism that is widely used by WS-* specifications and SOAP en-
gines to realise functionality such as security, reliable messaging or transactions
(e.g. [68, 69, 70]). A simple SOAP message is depicted in Figure 2.10.

<soap:Envelope xmlns:soap="http://.../soap/envelope/"

xmlns:a="http://.../ws/2004/08/addressing">

<soap:Header>

<a:MessageID>uuid:6B29FC40-CA47-1067-B31D</a:MessageID>

</soap:Header>

<soap:Body>

<EmployeeDetailRequest xmlns="urn:example:schemas">

<EmployeeNumber>T243261</EmployeeNumber>

<Detail>basic</Detail>

</EmployeeDetailRequest>

</soap:Body>

</soap:Envelope>

Figure 2.10: A simple SOAP message. The headers define WS-Addressing in-
formation while the body contains the application data.
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2.6.4.1 WS-Addressing

Until the release of the WS-Addressing standard in 2006 [13], there was no
standardised way to embed addressing information in SOAP messages. Essen-
tially, the underlying transport protocol (e.g. HTTP) contained the information
as to where the message should be delivered. SOAP messages, however, are
inherently transport-independent and can thus potentially travel through many
different SOAP intermediaries and an arbitrary number of networks and proto-
cols. WS-Addressing solves this issue by providing mechanisms for embedding
addressing information at the message-level.

WS-Addressing also defines some additional standardised SOAP headers
that can be used to convey information related to message delivery. In partic-
ular, the MessageID, RelatesTo and ReplyTo headers are crucial for delivering
and correlating messages that are part of asynchronous interactions. In fact,
SSDL layers on top of WS-Addressing for exactly that reason.

2.6.5 Interaction Styles

SOAP was originally designed to unify proprietary RPC communication. In-
fluenced by distributed object technology paradigms, the primary idea was to
use SOAP to serialise and deserialise object graphs into an interoperable format
(i.e. XML) for transmission over the network.

Since its version 1.1 in 2000, the SOAP protocol has included two distinct
styles of messages: RPC-style and document style. The way XML data is rep-
resented in XML can be defined by encoding rules (i.e. encoded) or external
schemas (i.e. literal). This leads to a total of four style-encoding combina-
tions. Yet in practice, Web Services normally use either document/literal or
RPC/encoded. The latter combination, however, is no longer supported by the
WS-I Basic Profile [71]. Unfortunately, these different styles have caused a lot
of confusion in the community during the past years [72].

2.6.5.1 RPC-Style

In RPC-style interactions, the body of a request message contains the name
of the remote procedure the requesting service wants to invoke, including the
parameters that are expected by the procedure. Similarly, a response message
encapsulates the output of the remote procedure, formatted in XML. In most
cases RPC-style Web Services operate synchronously and use simple request-
response patterns for communication. As a result, most are implemented using
HTTP, because its request-response model fits well with RPC.

However, RPC-style Web Services suffer similar drawbacks to those exhib-
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ited by RPC-oriented distributed systems, which were discussed in Section 2.1.
These kind of applications are normally tightly coupled, limited in scalability
and brittle at distribution boundaries [9]. In particular, RPC-style Web Ser-
vices tend to expose the method signatures of applications objects, which makes
it hard for individual service implementations to evolve independently without
changing or breaking their public contract. Moreover, the synchronous nature of
RPC-style Web Services does not support long running transactions well, keeps
connections open during message processing, makes services dependent on each
others availability and cannot easily accommodate more complex conversations.
Further, interfaces that are based on methods, parameters and return values
tend to be rather fine grained. Since a message is sent for each method invo-
cation, this results in “chatty” services with a large number of calls across the
network. This level of granularity often does not fit well with business pro-
cess models, which commonly operate at a higher level of abstraction and use
more coarse grained business concepts such as purchase orders or invoices for
communication.

In [67], Loughran and Smith additionally discuss O/X mapping10 issues that
arise when developing Web Services in an RPC fashion. The problem is known
as Object/XML Impedance Match and roots in the fact that the XML Schema
language [73] is richer than the models underlying current object-oriented lan-
guages such as Java or C#. In other words, this means that it is not generally
possible to serialise method parameters and return values into valid XML or
vice versa.

Still, many of the Web Services that exist today are RPC-based and many
keep advocating these practices (e.g. [74, 75]). Pasley argues in [76] that the
cause of this situation is rooted in current development practices and the wide-
spread use of tools that generate WSDL from local objects and APIs (e.g. [7, 6]).
Many developers favour this approach, because they can develop services using
familiar programming abstractions (i.e. method semantics) within their pre-
ferred environment (i.e. programming language). Pasley notes, however, that
these kind of Web Services – in addition to exhibiting the previously discussed
undesirable characteristics – tend to reflect the environments in which they were
developed (e.g. programming languages, tools, etc.).

2.6.5.2 Document-Style

In document-style interactions, the SOAP message body encapsulates a com-
plete XML document, whose structure is normally defined in an XML schema.
Given the primary purpose of Web Services is to enable interoperability be-

10This is the process of mapping objects to and from XML, respectively.
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tween heterogeneous applications and foster their integration, they often involve
business processes and business documents, rather than function-oriented com-
ponents related to programming languages. Indeed, document-based messages
tend to be rather coarse grained and align quite naturally with business mod-
els. The documents are typically self-contained and include all the contextual
information necessary to process the message. Document-style Web Services
therefore tend to consider documents as the main representation and purpose of
the interaction. This makes these type of Web Services ideal for asynchronous
communication, which allows for creating robust, scalable and loosely coupled
distributed applications. Although document-style messages tend to be larger
than RPC-style messages, this does not necessarily imply performance penal-
ties, because fewer messages are usually required to accomplish a given task,
hence resulting in less network calls. In fact, Maheshwari [77] presented some
results that even showed an increase in performance when using Web Services
in combination with message queueing.

As a matter of fact, document-style Web Services share many characteris-
tics with messaging systems, which were discussed in Section 2.2. Unlike the
latter, however, document-style Web Services do not need a centralised point
of access and communicate using open standards. Indeed, centralised middle-
ware and system heterogeneity were two of the main reasons that prevented
messaging systems in the past from being more widely used across organisa-
tional or geographic boundaries. Banavar et al. identified the need for some
“glue technology for loosely integrating distributed systems”11 back in 1999,
before Web Service even existed. They suggested that this technology should
extend existing asynchronous messaging (or eventing) paradigms rather than
RPC. Carzaniga argued in his doctoral thesis [78] in 1998 and subsequent pa-
pers [79] that systems operating in a reactive manner based on asynchronous
events do not require integrated components to be tightly coupled. He likewise
envisioned that these paradigms could be used for integrating applications on
an Internet-scale. Indeed, the underlying principles of these asynchronous mes-
saging and event-based systems are essentially the same as the ones underlying
document-based Web Services.

2.6.5.3 Document-Style fosters Loose Coupling

Admittedly, it is fair to ask why people still build RPC-style Web Services. The
answer to that question is twofold. First, many Web Service applications do
not require a high degree of loose coupling, scalability and so forth. Hence, the
benefits of using document-style interactions might not outweigh the benefits of

11Banavar et al., “A case for message oriented middleware”, 1999
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using RPC-style communication. Second, there is clearly less development sup-
port available for creating document-centric Web Services in terms of both tools
and developer skills. Developers are familiar with synchronous call semantics
and traditional programming languages. Also, adopting an approach focusing
on documents inevitably requires more familiarity with XML technologies. Yet
the proper use of them is what would let developers take full advantage of these
standards (e.g. richer descriptions, validation, etc.).

For the reasons given above, it is widely agreed that the asynchronous and
document-centric view better coheres with the idea of creating Web Services that
function as independent, loosely coupled application components (e.g. [23, 72,
21, 80, 67, 76, 31]). This, however, requires development practices to move away
from RPC-style code-generators to tools that foster the creation of document-
centric Web Services.

2.6.6 Web Services Description Language (WSDL)

Traditionally, Web Services are described in an extensible machine-processable
format called the Web Services Description Language (WSDL) [5]. WSDL de-
scriptions can be separated into an abstract and a concrete part. The abstract
part is defined in terms of input and output messages that are supported by
logical groups of operations. The concrete part binds the abstract definition
to a particular network location and implementation style (i.e. binding). The
obvious benefit of this separation is that the abstract definitions can be reused
and implemented in different manners (e.g. SOAP, REST). Together, the ab-
stract and concrete parts form a public service contract that is exposed to other
services.

2.6.6.1 RPC All Over Again

In a similar way to SOAP, it seems that WSDL’s design was influenced by RPC-
based ideas. Strictly speaking, the fundamental abstraction underlying WSDL
is based on message-passing and makes no assumptions about synchrony. Yet
it is fair to say that WSDL’s focus on operations as the primary abstraction
for communication encourages developers to use it as an Interface Description
Language (IDL) [81]. This practice is mirrored by the large amount of vendor
products that support developers in using WSDL for generating service proxies
(e.g. [6, 7]) in order to shield the details involved in accessing remote services.
As a result, Web Service applications built in such ways are not architecturally
different from RPC systems. Vogels shares this view in [20] and claims that
Web Services might solve some interoperability issues, but “provide no magic
that can suddenly overcome what excellent protocol architects were unable to
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achieve with established RPC systems”12.

2.6.6.2 Complexity and Scope

In its current version, the WSDL 2.0 core standard [5] is over 100 pages long and
contains many improvements compared to its predecessor. Yet some comments
on it have not been favourable, mainly complaining of its unnecessary weight and
complexity [82, 83]. Despite its ponderosity, WSDL can only capture a fraction
of the mechanics and semantics that are essential for a successful service-level
agreement. In fact, WSDL merely addresses connectivity issues such as message
format and transport bindings. Yet Meredith and Bjorg [84] argue that much
of the substantive complexity of distributed applications does not actually lie
in connectivity but interoperation issues, such as order, duration and QoS.

In particular, Meredith and Bjorg elaborate on the necessity of making or-
der constraints explicit in service descriptions (see Section 2.7). WSDL, how-
ever, does not provide any support for capturing message ordering constraints,
apart from the eight simple message exchange patterns that are defined in the
WSDL adjuncts specification [85]. As a result, it is – except for the most trivial
cases – not possible to automatically determine the sequence of messages that
can be sent and received to and from a service, respectively. Although addi-
tional specifications exist that can be layered on top of WSDL (e.g. abstract
BPEL [64],WS-CDL [63]), they tend to further increase the complexity of the
Web Service description. Indeed, Parastatidis et al. [86] argue that these speci-
fications are more verbose and complex than they would be if more fundamental
messaging abstractions had been chosen from the outset. Either way, most agree
that in order to increase automation of service-level agreements, the amount of
explicit and mechanised service information should be maximised.

2.7 Interaction Protocols

Protocols13 describe how two or more services can interact meaningfully by
defining constraints on the relative ordering of exchanged messages. They are
public documents that focus solely on interactions among participants and do
not reveal details about how a service actually implements them [87].The or-
dering conditions and constraints under which messages are exchanged can be
observed either from the perspective of an individual service or from a global
viewpoint [88]. In the latter case, this is often referred to as choreography.

12W. Vogels, “Web services are not distributed objects”, 2003
13In the present body of literature, the terms interaction protocol, coordination protocol or

abstract process are used interchangeably.
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Although the degree of a protocol’s complexity can vary significantly, every
service implementation inherently holds a protocol that other services must ad-
here to. In some cases, the protocol might exist only implicitly, defined by the
constraints that a service implementation imposes on the structure of valid mes-
sage exchange sequences. In contrast, it can also exist in an explicit form, which
is, of course, ideally congruent with the implicit definition. If the protocol is
expressed not by mere implication, its format can range from informal descrip-
tions (e.g. verbal, business documents, etc.) to formal and machine-processable
representations (e.g. abstract BPEL [64], WS-CDL [63], SSDL [10], etc.). Be-
cause interactions between services are normally constrained and cannot happen
independently from each other, explicit protocol descriptions have the evident
benefit that they can be used by other services for deriving the correct inter-
action behaviour. Moreover, machine-processable descriptions can be leveraged
in a number of ways by middleware implementations.

Although not yet consolidated in contemporary product development prac-
tices, it has been widely accepted in the research community that Web Services
are best described in terms of message exchanges (e.g. [89, 87, 90, 84, 63, 50]).
Benatallah et al. claim that protocol descriptions can have positive effects on
service development, binding and execution and thus considerably simplify the
service lifecycle [91]. Although still an active research area, protocols can poten-
tially be used to determine if two services are equal, replaceable or compatible
in terms of their protocols [88, 91]. Nevertheless, substituting one service with
another is, in general, an inherently hard problem. In fact, ongoing efforts in
the context of semantic web research [66] have been addressing this problem for
a number of years without reporting major breakthroughs.

As discussed to some extent in [91], protocol-aware middleware can exploit
the benefits of protocol descriptions in a number of ways:

Protocol enactment. Protocol descriptions enable middleware to establish
at runtime whether the sequence of exchanged messages comply with a
defined protocol. In case the protocol is violated, the middleware can
automatically take appropriate actions such as dropping the message or
sending a fault message. This frees the developer from having to imple-
ment this kind of exception handling in the application code.

Conversation-based message dispatching. Protocols can be used to con-
trol the logic for dispatching messages to application code. This accounts
for the fact that the semantics of a message type can change during a
conversation. For example, while it might be fine to cancel an order after
it has been placed, it might not be possible after it has been shipped.
Protocol-aware middleware can take advantage of this by dispatching the
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same type of message to different local service methods. Again, this re-
moves development burdens from programmers as they do not have to
implement this logic in application code.

Code generation. A service’s protocol specification can be used to generate
client source code that “knows” how to interact with the service.

Analysis. A range of analytic activities can be performed by protocol-aware
tools. This includes static design-time verification to check, for example,
if a client implementation is compatible with a service. Further, it can be
used to monitor service evolution and detect potential breaking changes.
Finally, it can help to determine service compliance with industry stan-
dards such as RosettaNet [92] or Lixi [93].

In order to realise the potential benefits of protocol descriptions, current
research has identified a need for models, languages, protocol algebras and tools
facilitating protocol-related tasks [91].

2.7.1 Protocol Languages

A wide range of languages for describing service protocols currently exists. Un-
fortunately, there is no unanimous consent or agreement in the broader com-
munity as to which one is best fitted for the purpose. At present, the only
two standardised initiatives within the Web Service community are abstract
BPEL [64] and the Web Services Choreography Description Language (WS-
CDL) [63]. As with other Web Service standards, however, concerns have been
raised about the verbosity and complexity of these languages [94]. In the re-
search community, a number of other languages and models exist in parallel to
these standards. They include approaches based on Petri nets [95, 96], process
calculi [97, 64, 63, 98], finite state machines [99], etc.

Van der Aalst et al. argue that abstract BPEL, WS-CDL or Petri nets
are not suitable as protocol languages because they are too procedural and im-
perative. They advocate that given the autonomous nature of services, more
declarative approaches are needed and compare the difference between a ser-
vice and its description to the one between a program and its specification,
emphasising that one can specify a program without specifying its implemen-
tation [100]. Indeed, van der Aalst and Pesic propose a new, more declarative
language called Declarative Service Flow Language (DecSerFlow) [94], which
can be used to describe protocols from both an individual or a global perspec-
tive. Other declarative approaches include the SSDL SC [98], CSP [101] or
Rules [102] protocol frameworks.



32 CHAPTER 2. BACKGROUND

Salaün et al. [89] agree that Web Services and their interactions are best
described using protocol languages and suggest that process algebras such as
CCS [103], π-calculus [97], CSP [104] and so forth should be used for doing so.
Meredith and Bjorg likewise propose the use of process calculi for modelling
protocols in [84]. Clearly, such languages provide useful and practical advan-
tages, including formal verification to ensure the absence of deadlocks or race
conditions, establishment of compatibility and replaceability between services,
etc. Moreover, advanced automated tools (e.g. SPIN [105]) exist that support
these kind of tasks. Indeed, many languages claim to be based on one or the
other form of a more abstract process algebra (e.g. [64, 63, 98, 101]). In [88],
Brogi et al. show how protocols captured in the Web Services Choreography
Interface (WSCI)14 language can be formalised using CCS. In [107], Foster et
al. present a model-based approach to verification and a tool that translates
protocols written in BPEL or WS-CDL to a process algebra. In [108], Ouyang
et al. demonstrate how BPEL can be mapped to Petri net structures. Still, in
many cases connections between languages and formal underpinnings have not
been rigorously and formally established [109, 110].

Model Completeness Compositionality Parallelism Resources

Turing M. 3 7 7 3

λ-calculus 3 3 7 7

Petri Nets 3 7 3 3

CCS 3 3 3 7

π-calculus 3 3 3 3

Table 2.1: Comparison of different formal models according to [111].

Yet other authors including Desai, Chopra and Singh criticise above ap-
proaches for either ignoring business semantics altogether or merely specifying
them at a low level [112]. Instead they propose formalisms that enrich business
protocols semantically and capture their contractual essence and meaning [113]
at a higher abstraction level.

As a result of the large number of different approaches and languages, it is
not always very clear whether differences among them are of fundamental or
merely syntactic nature. Even if a language cannot represent a given structure
directly, it is still sometimes possible to transform it into a representable form
with equivalent semantics. Although in this case, the expression power of the
language is not compromised, transformations are generally not desirable. The
resulting protocols usually tend to be dissimilar to the originals and are often-

14The WSCI [106] specification was one of the primary inputs for WS-CDL, but was super-
seded by the latter in 2005.
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times harder to read and understand [114]. In fact, analysing the differences in
features supported by languages not of the same kind is an active research area.
A considerable amount of effort has been put into systematically analysing the
expressiveness of workflow languages by comparing them against a catalogue of
patterns [115, 116]. The results of this research are to some extent also appli-
cable to protocol languages. Indeed, more research in this direction would be
worthwhile in order to converge to a commonly accepted standard.

2.8 Service Composition and Workflows

Because of the uniform notations and syntax introduced by Web Services, the
functionality and interfaces of application components can be described in a
standardised way. As a result, existing applications can be plugged together in
unanticipated ways and form new composed applications. Yet composed appli-
cations can again be exposed to the network as services in a recursive manner.
This allows an arbitrary deep nesting of logic and complexity at increasingly
higher levels of abstraction. Because the logic is encapsulated in the service
and not publicly visible, consuming services are unaware whether functionality
is provided by conventional means or by combining the functionality of aggre-
gated services.

Often, the composition logic is implemented as part of the service code using
standard object-oriented languages. This approach, however, has disadvantages
because the composition logic is hard coded and thus difficult to change and
maintain. As a result, methods and languages have been created that enable
separating the composition logic from its implementation and describe it in a
more abstract way as a workflow15.

2.8.1 Relationship with Interaction Protocols

Even though there are strong links between workflows and protocols, they ad-
dress different goals. The former are private detailed descriptions that define
internal implementation aspects of a Web Service while the latter are public
documents that omit implementation details and capture only valid message
exchange sequences. Protocols specify what a service does in terms of the ex-
changed messages, whereas workflows specify how it is done. Consequently,
workflows can be executed but protocols cannot. Inevitably, changing a work-
flow will influence the associated protocol and vice versa. In fact, we established
earlier that every service (composed or conventional) implicitly defines a proto-
col. If the service implementation is specified through a workflow language, tools

15Often also called process or business process.
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can be built to generate an explicit version of the protocol. Analogously, pro-
tocol descriptions can be used to drive the design of workflows [3]. Figure 2.11
illustrates the difference between protocols and workflows.

BPEL

Service A Service B

workflow

protocol

Figure 2.11: Difference between protocol and workflow. The messages ex-
changed between Service A and Service B are triggered by the respective service
implementation and must adhere to a protocol. Service B is internally imple-
mented through a workflow (e.g. BPEL) that specifies how it interacts with
the aggregated services on the right. Service A, however, is not aware of these
interactions, because they are part of Service B’s implementation.

2.8.2 Business Process Execution Language (BPEL)

The Web Services Business Process Execution Language (WSBPEL) [64] has
emerged as the de-facto standard for describing and executing workflows. Apart
from offering a large number of constructs for capturing various workflow struc-
tures, BPEL also supports a model for long-running transactions, message cor-
relation, dynamic partner binding and so forth. BPEL processes can be either
executable or abstract. Executable BPEL processes are typically private doc-
uments and specify all the information necessary to execute the process on a
workflow system. Conversely, abstract BPEL processes are – despite their name
– used to capture protocols. They are intended to be published and define
only the possible service interactions without revealing implementation details.
Although the name might not suggest it, BPEL cannot just be used in enter-
prise computing, but likewise in other process-aware applications. Especially in
Grid computing [117, 118], it has been successfully applied for describing and
executing scientific workflows [119, 120].

Even though a lot has been written about workflows and workflow manage-
ment (a comprehensive overview is given in [121]) there is still little consensus
about their conceptual and formal foundations [114]. Van der Aalst et al., for
example, generally accept BPEL as a powerful language, but argue that it is
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too complex, too verbose and too difficult to use. In an attempt to tackle this
problem from a different angle, Russel et al. present an extensive catalogue
of workflow patterns and use it to systematically compare features and seman-
tics of numerous workflow languages [116]. Based on this work, Wohed et al.
established that BPEL is, for example, not capable of representing arbitrary cy-
cles [122]. Indeed, we were confronted with this limitation when modelling the
protocol as an abstract BPEL process in our case study, presented in Chapter 5.

Based on the workflow pattern research, van der Aalst and ter Hofstede
have created a new language including runtime support called Yet Another
Workflow Language (YAWL) [123, 124]. According to [116] YAWL supports
about three quarter of the workflow patterns. Still, BPEL has been widely
adopted in industry and academia and is unlikely to be replaced by another
proposal in the near future. It is now firmly established as a standard and
a considerable number of tools providing support at different levels have been
created (e.g. [125, 126, 127]).

2.9 SOAP Service Description Language (SSDL)

The SOAP Service Description Language (SSDL) [10] is an XML-based lan-
guage for describing asynchronously communicating Web Services in a message-
oriented way. It focuses on one-way messages as the building blocks for creating
service-oriented applications and provides mechanisms for describing the struc-
ture of SOAP messages. Moreover, it offers an extensible range of pluggable
protocol frameworks, which can be used to combine messages into protocols
that define their relative ordering (see Section 2.7). Additionally, some pro-
tocol frameworks can be used to create protocols that are amenable to formal
verification using model checkers to ensure the absence of deadlocks or race
conditions.

2.9.1 Structure

An SSDL contract can be separated into the following four major sections:

• Schemas section: Defines the structure of SOAP message elements used
by the service, normally using XML Schema;

• Messages section: Declares the SOAP messages that a service supports,
including body elements and header elements that cannot be inferred from
an associated policy document;

• Protocols section: Defines how messages relate to each other and the
valid sequences in which they can be exchanged. Different protocol frame-
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Endpoints

Protocols

Messages

Schemas

SC

Rules

CSP

MEP

Figure 2.12: The structure of an SSDL contract. Initially four protocol frame-
works have been released with SSDL, but new ones can be added, if required.
Adapted from [10].

works can be used, depending on the required level of formal verification
and the number of parties involved in a protocol;

• Endpoints section: Uses WS-Addressing [13] to define endpoints of Web
Services that are known to support the given contract.

2.9.2 Messages

SSDL assumes SOAP (over arbitrary transport protocols) together with WS-
Addressing as the only means of transferring messages between services. In fact,
SSDL relies on WS-Addressing headers to correlate and dispatch messages (see
Section 4.3.1). Consequently, defining bindings for different transport protocols
is unnecessary and messages can be described in a more lightweight way than
can be with WSDL, which does not explicitly target SOAP. Likewise, adopting
SOAP from the outset gives developers greater control over message structures,
because it makes it possible to define SOAP header elements as part of the
contract. Figure 2.13 illustrates how a message is defined in an SSDL contract.

Yet this reduction in complexity compromises flexibility to some degree.
Admittedly, most of today’s Web Services use SOAP for communication, but
there are other applications, such as those based on REST principles, that do
not. Also, some applications (e.g. grid computing, mobile devices, etc.) might
not choose SOAP because its XML syntax can lead to an increase in message
size. Instead, they might choose more lightweight message representations or
binary XML formats (e.g. [128]) in order to increase performance.
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<ssdl:messages targetNamespace="urn:my:messages" xmlns:s="urn:my:schema">

<ssdl:message name="MsgA">

<ssdl:header ref="s:MyHeaderX"

mustUnderstand="true" />

<ssdl:header ref="s:MyHeaderY"

role=".../ultimateReceiver"/>

<ssdl:body ref="s:MyBody" />

</ssdl:message>

</ssdl:messages>

Figure 2.13: A message defined as part of an SSDL contract. The header and
body refer to XML schema elements.

2.9.3 Protocols

Messages defined in the contract can be combined and related into protocols.
Currently, four protocol frameworks – MEP (Message Exchange Pattern) [129],
CSP (Communicating Sequential Processes) [101], Rules [102] and SC (Sequenc-
ing Constraints) [98] – have been specified, but additional protocol frameworks
can be created and plugged into SSDL, if needed. Although this kind flexi-
bility is generally appreciated it is a mixed blessing and we fear that it might
be obstructive to achieving a common standard. One could create a Web Ser-
vice description language simply by posing no restrictions on its content (e.g.
<xsd:any processContents=“skip”/>). Clearly, almost everything could be rep-
resented in this language. However, this of course would not solve the actual
interoperability issues, but merely shift them to another area.

2.9.3.1 MEP Protocol Framework

Of the four initial SSDL protocol frameworks, the MEP framework [129] is the
simplest and least sophisticated. It does not demonstrate SSDL’s full strength
and has primarily been designed for capturing the message exchange patterns
defined in [85] so it can be used as a simple SOAP-centric language replacement
for WSDL. Figure 2.14 shows a protocol captured using the MEP framework.
The first mep element on line 2 defines an in-only pattern in which MsgA
represents the incoming message. The second mep element on line 5 defines an
in-optional-out pattern with MsgB representing the incoming message, MsgC
being the outgoing message and FaultX standing for the optional fault message.

2.9.3.2 SC Protocol Framework

Other protocol frameworks, however, allow specifying much more sophisticated
protocols. The semantics of the SC framework, for example, are based on π-
calculus and enable the definition of protocols over and above simple request-
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1 <ssdl:protocol xmlns:mep="urn:ssdl:mep:v1">

2 <mep:in-only>

3 <ssdl:msgref ref="MsgA" direction="in"/>

4 </mep:in-only>

5 <mep:in-optional-out>

6 <ssdl:msgref ref="MsgB" direction="in"/>

7 <ssdl:msgref ref="MsgC" direction="out"/>

8 <ssdl:msgref ref="FaultX" direction="out"/>

9 </mep:in-optional-out>

10 </ssdl:protocol>

Figure 2.14: Interaction protocol specified using the MEP SSDL protocol frame-
work.

response patterns. Figure 2.15 illustrates a simple SC protocol that could not
be expressed using WSDL. The protocol defines that the service is initialised
by MsgA from another service referred to as U. Next, the defined service sends
either MsgB or MsgC to another service referred to as V. Then, it expects MsgD
back from V and finally delivers MsgE back to U. Note that this specification
is declarative. It just defines what can happen. How it will eventually happen,
is determined by the application logic that implements the contract.

1 <ssdl:protocol xmlns:mep="urn:ssdl:sc:v1">

2 <sc:sc>

3 <sc:participant name="U"/>

4 <sc:participant name="V"/>

5 <sc:protocol>

6 <sc:sequence>

7 <ssdl:msgref ref="MsgA" direction="in" sc:participant="U"/>

8 <sc:choice>

9 <ssdl:msgref ref="MsgB" direction="out" sc:participant="V"/>

10 <ssdl:msgref ref="MsgC" direction="out" sc:participant="V"/>

11 </sc:choice>

12 <ssdl:msgref ref="MsgD" direction="in" sc:participant="V"/>

13 <ssdl:msgref ref="MsgE" direction="out" sc:participant="U"/>

14 </sc:sequence>

15 </sc:protocol>

16 </sc:sc>

17 </ssdl:protocol>

Figure 2.15: Interaction protocol specified using the SC SSDL protocol frame-
work.

2.9.4 Claimed Benefits

SSDL claims to take a more lightweight approach at describing Web Services
than incumbent standards such as WSDL [86]. By focusing on messages, SSDL
expects to encourage the creation of loosely-coupled and service-oriented ap-
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plications. Moreover, SSDL supports developers working directly with SOAP
messages as their fundamental abstraction and discourages them from thinking
about exposing application objects directly as Web Services. Finally, providing
mechanisms for capturing a service’s messaging behaviour allows exposing this
information to other services as part of the service description.

2.9.5 Tool Support

Unfortunately, almost no data exists that reports on experiences using SSDL
as part of Web Services-based SOAs. There is only one set of published results
from a project known to have used SSDL to model its services [130]. The lack of
empirical data makes it hard to assess the capabilities and potential of SSDL as a
service description language in a general sense. We believe that the main reason
why SSDL has not been used more widely is the lack of tool support for creating
and executing SSDL-based Web Services. On one side, there are no tools and
programming abstractions that aid developers in modelling and implementing
SSDL-based Web Services. On the other side, no SSDL-aware middleware exists,
which could exploit the benefits of machine-processable protocol descriptions we
described in Section 2.7.

2.10 Summary

Diverse architectural styles and technologies exist for creating distributed soft-
ware applications. Choosing a particular style normally has a number of conse-
quences on the application design. RPC-based approaches attempt to shield the
network and provide developers with familiar programming abstractions based
on operation invocation semantics. Yet RPC applications tend to be tightly
coupled, brittle at distribution boundaries and limited in scalability. Messag-
ing, on the other side, is well suited for integrating applications in a loosely
coupled and scalable way. Traditional messaging approaches, however, require
centralised infrastructure. In practice, this is a major obstacle for integrating
components across organisational, trust or geographical boundaries.

Web Services address interoperability and integration issues by providing
a broad range of XML-based standards. They can be used for building ap-
plications that adhere to SOA principles, where the primary abstraction for
communication is one based on message passing. Yet simply using Web Ser-
vices does not automatically lead to service-oriented systems. Indeed, there are
two main views of Web Services, an RPC-centric view and a message-centric (or
document-centric) view. In particular, we accepted that the design of WSDL
is RPC-centric and can therefore be obstructive for building service-oriented
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applications (e.g. focus on operations rather than messages, insufficient con-
trol over SOAP messages, high complexity, unable to capture message ordering
constraints over and above simple request-response patterns). We concluded
the chapter with a discussion of an alternative Web Services description lan-
guage called SSDL, which provides a more message-centric approach for building
service-oriented applications.



Chapter 3

The Programming Model

} Things should be made as simple as possible, but no simpler. ~

— Albert Einstein

The programming model presented in Soya [12] allows developers to build SSDL
services in a straightforward manner. It encourages the creation of service-
oriented applications without imposing unrealistic development burdens. De-
velopers define message structures and protocols using metadata. Soya in turn
leverages this information to infer SSDL contracts, which are utilised by its
runtime and can be exposed to other services.

Soya is built on top of the Windows Communication Foundation (WCF) [61]
and its programming abstractions are partially based on the latter’s program-
ming model, which offers a number of ways to implement services. While this
generality and flexibility is normally appreciated, it can also lead to confusion.
Although WCF can certainly be used to build message-oriented applications,
choosing the wrong programming abstractions can easily corral a developer
into creating RPC-like applications. Conversely, Soya’s programming model
is more restrictive. In fact, it aims at forcing developers to think in terms
of one-way messages and therefore encourages the creation of loosely coupled
message-oriented systems.

3.1 Development Life Cycle

Creating and deploying a service implementation, normally involves the follow-
ing basic tasks [131]:

1. defining the service contract including messages and protocols;

2. implementing the contracts;

41
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3. configuring the service;

4. deploying the artefacts created in the previous steps.

Typically, the contractual data is defined declaratively using C# attributes.
Contracts are implemented by means of C# code and configuration-related as-
pects are specified in XML. Although different ways exist to creating these
artefacts, we favour the one just described. Figure 3.1 shows these artefacts, to
which we will collectively refer to as service implementation.

Application

Logic

C#

Configuration

XML

SSDL Contract

C# & Attributes

Service Implementation

Figure 3.1: The different artefacts of a service implementation. C# code is used
to implement application logic, metadata attributes describe the SSDL contract
and XML configuration files specify service endpoints, security settings, etc.

3.2 Defining SSDL Contracts Using Metadata

C# attributes are a mechanism for declaratively embedding metadata in C#
source code. This metadata adds additional information to the code that can
be retrieved, processed and interpreted by other programs. In WCF’s pro-
gramming model, service and message contracts are typically defined in this
declarative manner [36]. Soya reuses this programming model and provides
additional SSDL-specific attributes and functionality. On the one hand, this
allows developers to define the structure of messages supported by an SSDL
contract. On the other hand, it can be used to describe how these messages re-
late to each other using different protocol frameworks. This attribute-oriented
approach makes it possible to specify contract data with very little code, yet
provides extensive control over the contract when warranted.

In Soya, we have adopted the attribute-oriented programming model for the
following reasons:

• less code and hence less scope for error introduction;

• more easily maintainable due to single source location;

• seamless integration with WCF’s programming model and provision of
familiar idioms to existing C# programmers.
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Defining contracts using C# attributes is a fundamental concept in both
WCF and Soya and different attributes are available for different parts of the
contract. Figure 3.2 clarifies the interrelationship between service implementa-
tion and inferred SSDL contracts.

C#

XML

Schemas

Messages

Protocols

Endpoints

Service Impl. SSDL Contract

[DataContract]

[MessageContract]

[ProtocolContract]

[Config]

Figure 3.2: SSDL contracts are inferred mostly from C# source code and at-
tributes. Endpoints are usually defined in an XML configuration file.

3.2.1 Defining Messages

Where possible, we reused existing WCF attributes to make the transition from
WCF to Soya as smooth as possible. For concepts unique to SSDL, however,
we introduced additional attributes (e.g. SSDL message names and namespaces,
protocols, etc.). The following code snippet shows how message contracts are
defined in Soya:

[SsdlMessageContract] // Soya attribute

public class MsgA {

[MessageHeader] public string MyHeader;

[MessageBodyMember] public MyData MyBody;

}

The MessageHeader attribute maps a class member to a SOAP header. The
value of MyHeader, for example, is mapped to a primitive XML data type (i.e.
string). Similarly, MessageBodyMember maps to a SOAP body. Above, the
value of MyBody is mapped to a XML complex type, because it references a
custom type. As a result, it is necessary to define how this type is serialised and
deserialised to and from XML, respectively. This is done by annotating the class
with a DataContract and every serialisable class member with a DataMember
attribute:
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[DataContract(Namespace = "urn:my:schema")] // WCF attribute

public class MyData {

[DataMember] public int id;

[DataMember] public string code;

}

Attributes can take additional property parameters that are used to override
default values and give developers more control over the message data. For
example, to explicitly specify the qualified name of the SSDL message element
in the code above, one simply defines values for the Name and Namespace
properties:

[SsdlMessageContract(Name="...", Namespace="...")]

From the example code above, Soya can infer the following XML Schema
and SSDL message element, which are part of the SSDL contract:

<xs:element name="MyHeader" type="xs:string"/>

<xs:element name="MyBody" type="s:MyData"/>

<xs:complexType name="MyData">

<xs:sequence>

<xs:element name="id" type="xs:int"/>

<xs:element name="code" type="xs:string"/>

</xs:sequence>

</xs:complexType>

...

<ssdl:message name="MsgA">

<ssdl:header ref="s:MyHeader"/>

<ssdl:body ref="s:MyBody"/>

</ssdl:message>

3.2.1.1 Faults

Faults are defined in a similar way to messages. Since SSDL 1.0 does not allow
for capturing of the headers of a fault, we only need to define one class that
represents the detail element of the SOAP fault message1.

[SsdlFaultContract]

[DataContract]

public class FaultX {

[DataMember] public string Code;

[DataMember] public string Description;

}

1A more extensive discussion of issues related to SSDL faults is provided in Section 6.9.
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Again, Soya uses this information to infer XML Schema code as well as SSDL
fault elements, which are both part of the SSDL contract:

<xs:element name="FaultX" type="s:FaultX" />

<xs:complexType name="FaultX">

<xs:sequence>

<xs:element name="Code" type="xs:string" />

<xs:element name="Description" type="xs:string" />

</xs:sequence>

</xs:complexType>

...

<ssdl:fault name="FaultX">

<ssdl:detail ref="s:FaultX" />

</ssdl:fault>

As illustrated in the above examples, Soya leverages the attribute infrastruc-
ture provided by WCF (e.g. MessageHeader, MessageBodyMember). Instead of
generating WSDL, however, Soya uses it to generate SSDL contracts.

3.2.2 Defining Messaging Behaviour

Apart from defining sets of messages supported by a service, Soya’s program-
ming model also allows for the description of how they relate to each other.
Instead of correlating them based on operation semantics, however, protocol
frameworks are used. The basic building blocks for creating protocols are in-
coming and outgoing messages and there is no native request-response construct.
If we want to model such semantics, we need to define them using a protocol
framework. Indeed, that is exactly what the MEP framework [129] does. Other
protocol frameworks, however, allow the definition of more sophisticated mes-
saging behaviours over and above simple request-response and its ilk. This has
the positive side-effect of disallowing a one-to-one mapping between message
exchange patterns and API method invocations.

Although Soya has been designed to accommodate SSDL’s extensible proto-
col framework model and provides the necessary hooks to plug in new ones (see
Section 4.8.1), we have only implemented a programming model for the MEP
protocol framework [129]. The reason behind this decision is twofold: First, de-
signing good programming abstractions for supporting protocol frameworks is a
non-trivial task and implementing support for additional protocol frameworks
was thus beyond the scope of this work; second, the Soya runtime is not aware
of which protocol framework or which programming model was used to create
it. At runtime, it is thus irrelevant which framework was used to capture the
protocol. In the same way, it is insignificant to the runtime in what form the
protocol had been defined (i.e. C# attribute, XML files, etc.).
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This separation between the protocol framework, the programming model
and the runtime is clearly desirable, as it allows Soya to be extended in multiple
directions using different approaches. Further, it enables us to evaluate the
runtime behaviour in a generic way, without restricting our observations to a
particular protocol framework or programming abstraction.

3.2.2.1 Modelling MEP-Based Interactions

An SSDL contract is defined by annotating the service interface with a Service-
Contract attribute. Messaging behaviour is captured using SsdlProtocolCon-
tract and MEP attributes. The following lines show how simple MEP-based
interactions can be modelled using Soya:

1 [ServiceContract(Namespace = "urn:my:contract")]

2 [SsdlProtocolContract(Namespace = "urn:my:protocol")]

3 public interface IService {

4 [Mep(Style=MepStyle.InOnly)]

5 void Process(MsgA msg);

6

7 [Mep(Style=MepStyle.InOptionalOut, Out=typeof(MsgC),

8 Fault=typeof(FaultX))]

9 void Process(MsgB msg);

10 }

The attribute on the first method declaration defines an in-only MEP in
which MsgA represents the incoming message. The second method declaration
defines an in-optional-out MEP with MsgB representing the incoming message,
MsgC being the outgoing message and FaultX standing for the optional fault
message. From this code, Soya can generate the following SSDL protocol:

<ssdl:protocol targetNamespace="urn:my:protocol"

xmlns:mep="urn:ssdl:mep:v1">

<mep:in-only>

<ssdl:msgref ref="m:MsgA" direction="in"/>

</mep:in-only>

<mep:in-optional-out>

<ssdl:msgref ref="m:MsgB" direction="in"/>

<ssdl:msgref ref="m:MsgC" direction="out"/>

<ssdl:msgref ref="m:FaultX" direction="out"/>

</mep:in-optional-out>

</ssdl:protocol>

These examples show how Soya uses type and attribute metadata to infer
SSDL contracts. They also give an idea of how little additional code is necessary
to create an entire SSDL contract including XML Schema definitions, method
and fault declarations and protocol descriptions.
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3.3 Implementing a Service

A service implementation encapsulates the application logic that we want to
expose to other clients through the contract it implements. Although, from
an application perspective this can be the most difficult and time-consuming
task, it is relatively straightforward from a technical point of view. To do so, a
service developer just implements the service contract interface, as the following
example illustrates:

public class MyService : IService {

public void Process(MsgA msg) { /* application logic */ }

public void Process(MsgB msg) { /* application logic */ }

}

Service operations must have exactly one input parameter (i.e. the incoming
message). For ease of development, the XML infoset [132] of the incoming SOAP
message is mapped to a custom type. If desired, Soya also provides mechanisms
to access the XML infoset directly.

In order to adhere to the protocol defined in the service contract above, the
service implementer needs to ensure that potential outgoing response messages
are sent using Soya’s client API at some point during the execution of the
service method. Failure to do so might lead to protocol validation exceptions.
In the above example, none of the service operations require an outgoing message
because we defined two patterns that do not require an outgoing message (i.e.
in-only and in-optional-out) However, if we decide to send an outgoing message
during the execution of Process(MsgB), it needs to be either of type MsgC or
FaultX.

3.4 Client API

By nature of asynchronous messaging, Soya maps incoming messages to internal
API methods without output (i.e. no return value and no output parameters).
In order to send response messages, services use a client API provided by Soya.
Client functionality is encapsulated in a class called SoyaClient. It facilitates
sending outgoing messages and is used in the following two cases:

• initiating a new conversation with a remote service (i.e. sending the first
message of a conversation);

• sending a response message (i.e. a message relating to a previous one)
back to a client.
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As a consequence of the architectural thinking behind SSDL and its message-
oriented nature, response messages are not distinguishable from other one-way
messages. Correlation is done only by means of protocols and not request-
response patterns. This implies that every (client) service expecting to receive
messages (initial or response), must expose a public endpoint that accepts in-
coming messages.

3.4.1 Initiating a Conversation

In Soya, it is therefore always necessary to create a service instance prior to
sending a message, so that potential response messages can be handled by the
locally running service. Consequently, clients cannot be created explicitly by
a service developer, but must be obtained from a running service. This is
illustrated in the code snippet below.

First, a new service host is created, from which a pre-configured client can be
obtained. The endpoint of the service to which the client will connect is normally
declared in a configuration file but can also be specified programmatically via
method parameters of the GetClient() method. Subsequently, the client can
be used to send messages. Moreover, the underlying framework automatically
handles runtime issues such as session management, validation, correlation and
so forth:

SoyaServiceHost host = ...

SoyaClient client = host.GetClient();

Message m = ...

client.Send(m);

Not allowing the explicit creation of clients has another reason: At the time
of sending out the first message, no session context yet exists. When a client is
obtained, Soya thus creates and registers a new session context for that (client)
service so that it can correlate future messages accordingly. The mechanisms
used to achieve this are presented in Section 4.3.2 and apply to both clients and
servers alike.

3.4.2 Replying to a Previous Message

Sending messages that relate to previous ones involves writing even less code.
Although a SoyaClient is implicitly created and used, the service developer
does not have to create or obtain one directly. Instead, the Soya API defines
a static method that can be used, since the runtime has all the information it
needs to send the message (i.e. WS-Addressing ReplyTo and RelatesTo)2. The

2As a result of decoupling addressing information from the transport layer (WS-Addressing)
and message correlation from operation semantics (one-way messaging), we could also use a
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following code snippet shows a service sending a response that will automatically
be correlated with the one currently processed:

public void Process(MyMessage m) {

/* some application logic */

Message response = ...

SoyaServiceHost.Reply(response);

}

3.5 Configuring a Service

The final step in creating a deployable service implementation consists of writing
the service configuration. Although the configuration can be specified impera-
tively in code, the more flexible and common way is to define the settings in
XML.

The configuration file captures different aspects of the service, such as the
endpoint address, where it will be listening for incoming requests, the transport
protocol and message encoding used for sending and receiving messages, whether
it should use security, reliability and so forth. The following lines, define which
class implements the contract and where and how it will be available.

<system.serviceModel>

<services>

<service name="MyService">

<host>

<baseAddresses>

<add baseAddress="http://my.service.com/"/>

</baseAddresses>

</host>

<endpoint address="basic"

binding="BasicHttpBinding"

contract="IService" />

</service>

</services>

</system.serviceModel>

Given the configuration data, Soya infers the last part that was missing in
the SSDL contract, namely the SSDL endpoint:

<ssdl:endpoints>

<ssdl:endpoint xmlns:wsa="http://www.w3.org/2004/12/addressing">

<wsa:Address>http://my.service.com/basic</wsa:Address>

</ssdl:endpoint>

</ssdl:endpoints>

different transport protocol for the response (i.e. HTTP for the initial message and SMTP for
the response.)
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The complete SSDL contract that is inferred from the example code in this
section is shown in Figure 3.3.

3.6 Client-Server Symmetry

In a truly service-oriented environment, services communicate freely with each
other by actively sending or receiving messages at any given point in a conver-
sation. The terms client and server can thus be deceptive to some extent and
their roles might even change in a dynamic fashion during a single conversation.
We thus apply these terms more out of convenience than correctness. Conse-
quently, we use client to refer to a service that initiate a conversation and server
for the other service.

From a message processing point of view, it is not necessary to distinguish
between the two roles. Indeed, it is irrelevant whether an incoming message
is a response from a server or a request from a client. In the same way, it is
irrelevant whether an outgoing message is a response sent back to a client or a
request sent to a server.

This makes it possible to use Soya on both client and server side without
making any changes to the runtime or the programming model. What changes,
however, is the definition of the SSDL contract. To better illustrate this, con-
sider the following example: ServiceA is a server in the traditional sense, because
it waits for incoming messages, processes them and sends response messages back
to clients. A possible contract definition that captures this messaging behaviour
using Soya’s programming model could look like this:

public interface ServiceA {

[Mep(Style=MepStyle.InOut, Out=typeof(MsgB)]

void Process(MsgA msg);

}

Conversely, ServiceB is a client in the traditional sense, because it first sends
a message to a server and then expects a response message to come back. A
contract definition for a compatible client’s messaging behaviour could therefore
be:

public interface ServiceB {

[Mep(Style=MepStyle.OutIn, Out=typeof(MsgA)]

void Process(MsgB msg);

}

Note that we only changed the messaging behaviour (i.e. out-in instead of
in-out). This illustrates that the programming model can be used for any kind
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<ssdl:contract xmlns:ssdl="urn:ssdl:v1" targetNamespace="urn:my:contract">

<ssdl:schemas>

<xs:schema targetNamespace="urn:my:schema"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:tns="urn:my:schema">

<xs:element name="MyHeader" type="xs:string" />

<xs:element name="MyBody" type="tns:MyData" />

<xs:element name="MyData" type="tns:MyData" />

<xs:element name="FaultX" type="tns:FaultX" />

<xs:complexType name="MyData">

<xs:sequence>

<xs:element minOccurs="0" name="code" type="xs:string" />

<xs:element minOccurs="0" name="id" type="xs:int" />

</xs:sequence>

</xs:complexType>

<xs:complexType name="FaultX">

<xs:sequence>

<xs:element minOccurs="0" name="Code" type="xs:string" />

<xs:element minOccurs="0" name="Description" type="xs:string" />

</xs:sequence>

</xs:complexType>

</xs:schema>

</ssdl:schemas>

<ssdl:messages targetNamespace="urn:my:message" xmlns:ns1="urn:my:schema">

<ssdl:message name="MsgA">

<ssdl:header ref="ns1:MyHeader" mustUnderstand="false" relay="false" />

<ssdl:body ref="ns1:MyBody" />

</ssdl:message>

<ssdl:message name="MsgB">

<ssdl:header ref="ns1:MyHeader" mustUnderstand="false" relay="false" />

<ssdl:body ref="ns1:MyBody" />

</ssdl:message>

<ssdl:message name="MsgC">

<ssdl:header ref="ns1:MyHeader" mustUnderstand="false" relay="false" />

<ssdl:body ref="ns1:MyBody" />

</ssdl:message>

<ssdl:fault name="FaultX">

<ssdl:detail ref="ns1:FaultX" />

</ssdl:fault>

</ssdl:messages>

<ssdl:protocols>

<ssdl:protocol targetNamespace="urn:my:protocol"

xmlns:mep="urn:ssdl:mep:v1">

<mep:in-only xmlns:ns2="urn:my:message">

<ssdl:msgref ref="ns2:MsgA" direction="in" />

</mep:in-only>

<mep:in-optional-out xmlns:ns2="urn:my:message">

<ssdl:msgref ref="ns2:MsgB" direction="in" />

<ssdl:msgref ref="ns2:MsgC" direction="out" />

<ssdl:msgref ref="ns2:FaultX" direction="out" />

</mep:in-optional-out>

</ssdl:protocol>

</ssdl:protocols>

<ssdl:endpoints>

<ssdl:endpoint xmlns:wsa="http://www.w3.org/2004/12/addressing">

<wsa:Address>http://my.service.com/basic</wsa:Address>

</ssdl:endpoint>

</ssdl:endpoints>

</ssdl:contract>

Figure 3.3: The complete SSDL contract inferred from C# attribute meta data.
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of service, independent of their respective role in a conversation. Of course, the
same is true for Soya’s runtime.

3.6.1 XML Firewalls

Clients that define their interactions in this way can locally isolate validation
logic, essentially building a sort of XML firewall. This protects them from
services whose actual messaging behaviour does not adhere to the contract they
expose. This could happen because a malicious service tries to exploit potential
vulnerabilities or because a service’s messaging behaviour has changed but not
been propagated to the client. Either way, clients using Soya are protected from
these kind of erroneous messages as illustrated in Figure 3.4.

Malicious

Service

Application

Logic

Good

Service

Soya “Client”

Will send

MsgA

Will send

MsgA

not MsgA
Expecting

MsgA

Figure 3.4: Soya acts as an XML firewall ensuring that the only messages that
reach the application logic are those that it is prepared to receive.

3.7 Service Deployment

After defining contractual data, implementing application logic and specifying
configuration aspects, the service needs to be deployed and turned into an ex-
ecutable so that other services can interact with it. This is done by creating a
SoyaServiceHost instance, which is used instead of WCF’s default host imple-
mentation. The custom Soya host gives us the possibility to modify application-
wide behaviour at the service level and encapsulates SSDL-related functionality
in a clean abstraction that can easily be reused across many different service
applications.
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The host is created using a reference to the class that implements the service
contract. Upon opening the host, Soya reflects over the service and message
types, processes configuration files and builds the runtime from this information
(see Section 4.8). The following two lines show the API usage for deploying a
service implementation (in this case MyService):

host = new SoyaServiceHost(typeof(MyService));

host.Open();





Chapter 4

The Runtime Environment

} Perfection in engineering is achieved not when there is nothing left to add,
but when there is nothing left to take away. ~

— Antoine de Saint-Exupéry

Apart from presenting developers with programming abstractions for creating
SSDL-based Web Services, Soya [12] also provides a runtime environment for
executing them. The runtime infrastructure processes incoming and outgoing
SOAP messages and ensures contract conformance in terms of their structure
and ordering. Further, it features facilities for correlating and dispatching both
incoming and outgoing messages.

4.1 Introduction

The Soya runtime can be seen as a kind of middleware software that adds
SSDL-specific functionality and semantics to an existing SOAP engine. It is
built on top of the Windows Communication Foundation (WCF) [61], which
is a communication platform that provides support for processing SOAP mes-
sages and a number of other Web Services specifications. Choosing an existing
platform, allowed us to concentrate on implementing SSDL protocol support
and delegate issues such as efficient processing of SOAP messages, failure recov-
ery, implementing support for different bindings and so forth to the underlying
framework. Figure 4.1 schematically illustrates how the Soya runtime is trans-
parently placed between WCF and the application logic.

Soya leverages WCF in a number of ways. It alters its default runtime
behaviour by means of configuration. Moreover, it replaces parts of the default
WCF runtime logic with custom components (e.g. custom message correlation,
state management or operation invocation implementations). This is done either

55
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Figure 4.1: The Soya runtime can be thought of as an additional layer between
Web Service middleware and application logic.

by directly plugging them into the WCF runtime or by injecting behaviours
which in turn add the custom logic. All of these custom components are invoked
by WCF at various stages of service execution. Furthermore, Soya includes a
number of WCF-independent components that likewise contribute functionality
(e.g. message and protocol validation logic) to the overall system. They are,
however, not directly invoked by WCF. Figure 4.2 schematically illustrates these
interrelationships.

Soya Runtime Components

Service Implementation

WCF

Custom Impl

Behaviors

Configuration

Figure 4.2: Configuration files, injected behaviours and custom implementations
modify WCF’s default runtime behaviour. Above them is another layer of SSDL
functionality that is independent of WCF.

4.2 Runtime Components

The components that constitute the runtime each provide specific functionality
that are important for the overall runtime behaviour. Consequently, most of
them are involved in processing every incoming and outgoing message. In par-
ticular, the following seven components realise Soya’s core functionality. Apart
from the last component, the given order reflects the sequence in which they
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are invoked at runtime, when processing an incoming message:

1. message correlation and state maintenance;

2. structural validation;

3. protocol validation;

4. O/X mapping;

5. operation dispatching;

6. metadata generation and exposure.

In the following sections, we will discuss each component individually and
provide some more insights into how they work. We will follow the execution
order suggested above. However, we will not elaborate on the O/X mapping
component, because we mainly used standard WCF mechanisms to realise its
functionality.

4.2.1 Processing Flow

When an incoming message is received from the network, it is first of all pushed
through WCF’s channel stack, which consists of different elements that dese-
rialise, decode, decrypt and so forth the incoming bits into a Message object.
Immediately after the message exits the channel stack, it is correlated to a po-
tential existing conversation and its corresponding state. Next, it is intercepted
by a custom message inspector and handed over to the Soya validation runtime,
which performs a number of checks in terms of message structure and ordering.
Then, it is passed back to the WCF runtime where it is mapped to a custom type
and finally dispatched to a service operation. This is illustrated in Figure 4.3.

Similarly, but in reverse order, outgoing messages sent using Soya’s client
API are correlated, routed through the validation runtime and finally sent down
the WCF channel stack to the network.

4.3 Message Correlation & State Maintenance

Inherently, Web Services have no notion of state and do not offer any of the
stateful interaction facilities that most distributed object technologies provide
as a basic functionality [20]. Generally, ensuring statelessness in the implemen-
tation of Web Services is viewed as good engineering practice, as it increases the
reliability and scalability of services [133]. A stateless Web Service can easily
be interchanged with a different logical or physical manifestation. This might



58 CHAPTER 4. THE RUNTIME ENVIRONMENT

accept

messages

correlation and

state maintenance

structural

validation

protocol 

validation

O/X

mapping

operation

dispatching

execute

application

logic

intercept

1

2

3
4

5

6

7

8Service

MessageFormatter

ContextProvider

protocol

Channel Stack

Dispatcher

encoding

transport

MessageInspector

OperationInvoker

W
C

F 
R

u
n

ti
m

e

XsdValidator

MessageLocator

ProtocolStateMachine

Soya Validation R.T.

www

Figure 4.3: Message processing flow. Messages pass through a number of com-
ponents that perform various tasks and activities before they are dispatched to
a service operation.

be necessary, as a result of an increase in server load or failure of a particular
service instance.

Not being able to relate consecutive messages into ongoing conversations,
however, allows for the creation of only very limited distributed systems [20].
Often, applications need to logically relate a sequence of messages, such that the
results of one message exchange can be used as a basis for others. In order to
achieve this, exchanged messages need to contain contextual information, which
enables services to identify ongoing conversations [134].

A service can use the context information contained in the incoming message
to relate it to its internal state. To maintain the benefits of statelessness, a
service’s internal state needs to be kept in other system components (e.g. an
enterprise-grade database), so that other stateless service instances can access
it. This allows a service’s behaviour to appear stateful, while its implementation
in reality remains stateless. Figure 4.4 illustrates these concepts graphically.

Indeed, all of Soya’s runtime components are implemented in a stateless fash-
ion and only a minimum of stateful objects are maintained in session context.
In fact, the only stateful object that is maintained across message exchanges is
a copy of protocol state machine instances (see Section 4.5.6.
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Figure 4.4: Externalising the session context allows service instances to be phys-
ically interchanged between message exchanges without loosing the session con-
text. Adapted from [135].

4.3.1 Leveraging WS-Addressing

SSDL is predicated on SOAP and WS-Addressing [13]. In Soya, relating in-
coming messages to conversations and internal state is consequently done by
means of MessageID and RelatesTo headers. Simply put, the RelatesTo header
of every new incoming or outgoing message is linked with the MessageID header
of a previous message and thus forms an ordered sequence of header pairs (i.e.
messages). For example:

(1), (2, 1), (3, 2), (4, 3), . . .

Although stateful interactions between services could also be realised using
endpoint references and reference parameters1, we did not choose this approach
because it implies the use of custom – and thus potentially non-standardised –
SOAP headers. In contrast, our approach ensures a higher degree of interoper-
ability, as only standardised WS-Addressing headers are used.

4.3.2 Session Context Management

In accordance with above discussions, session context (i.e. state) is stored sepa-
rately and referenced by contextual information in the form of WS-Addressing
headers. In fact, session context stored in Soya is always associated with the
last processed message. This means that if a new message arrives, it can be lo-
cated based on the message’s RelatesTo header. If no session exists yet (i.e. first
message of a conversation), one is created. At the same time, Soya associates

1W3C, “Web services addressing”, 2004, Section 2
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the context with the new MessageID and updates the session context store (e.g.
a database) to reflect the fact that both future incoming or outgoing messages
must relate to the one just received.

This behaviour is best illustrated with an example. Figure 4.5 shows a simple
conversation that spans multiple logically connected messages. A client sends
an initial message with id 001. Because it does not relate to a previous one,
the service creates a new context and stores it (e.g. in a database). After the
service has finished processing the message, the in-memory context is destroyed
in order to free resources. Some time later, the client sends a new message with
id 002. By setting the RelatesTo header to the previous message, it indicates
that it is part of the same conversation. Upon receiving the message, the service
uses the RelatesTo information to retrieve the previously stored session context
and load it back into memory. At the same time, it updates the context store
to reflect the fact that the message with id 002 has been consumed (by the
current operation) and that future messages of the same conversation will need
to relate to the new id (i.e. 002). After processing message 002, the service
sends a response back to the client. Soya’s client API automatically correlates
the message by adding appropriate header information (i.e. setting MessageID
to 003 and RelatesTo to 002) (see Section 3.4).

Client ContextProvider Context ContextStore Service

MessageID: 001

RelatesTo:  --- Create()

Reply

...

...

...

...

...

MessageID: 002

RelatesTo: 001

MessageID: 004

RelatesTo: 003

Process

Message(001)

Process

Message(002)

MessageID: 003

RelatesTo: 002

SetHeaders()

MessageID: 003

RelatesTo: 002

Load()

...and so forth...

Retrieve(002)

Update(ctx,002)

Store(001,ctx)

Update(ctx,003)

SoyaServiceHost

Figure 4.5: A typical conversation that involves creating, retrieving and updat-
ing the session context.
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4.3.3 Session Context Lifetime and Maintenance

In Soya, the lifetime of a session context object is treated differently depending
on whether it was originally created by a client (i.e. SoyaClient) or by a service
(i.e. upon reception of an initial message).

4.3.3.1 Created by Clients

If a program initiates a conversation using a SoyaClient (see Section 3.4), the
session context it creates is implicitly bound to its lifetime. This behaviour is
based on the assumption that a user who disposes of the client, is no longer in-
terested in the conversation with the service. Additionally, this strategy avoids
memory leaks caused by session context zombies. Consequently, the client in-
stance needs to be kept in memory for the entire duration of the conversation in
order to maintain the session context. Indeed, this behaviour has proven to be
sufficiently adequate for the services created in our case study (see Chapter 5).

4.3.3.2 Created by Services

In contrast, the session context created on the server side has no preliminarily
confined lifetime2. The session context is not destroyed automatically, because
it cannot be generally determined in advance whether the client will continue
the conversation at some point. On the one hand, SSDL protocol descriptions
can have optional constructs (e.g. out-optional-in). On the other hand, they
do not constrain the temporal extension between consecutive interactions (e.g.
if a service has not sent a message after t time, it does not mean that it will
not send it after t + ∆). Of course, this can pose performance problems in
production environments, since only a finite number of session context objects
can be indefinitely kept in memory. This issue can be addressed using diverse
strategies that persist session context after a certain amount of idle time (e.g.
into a database). At the same time, this has the positive side-effect of increasing
application scalability and reliability as we discussed in Section 4.3. Determining
and adjusting the parameters which govern when session context objects should
be persisted or destroyed (e.g. client idle time, client activity, server load, etc.)
can vary significantly between applications and is thus not within the scope of
this work.

2This is only partially true, because it is actually destroyed if the service host is being
disposed of. Yet a persistent session context storage implementation (e.g. database, XML file,
etc.) could be used to maintain session state that transcends server restarts. In the current
Soya release this has, however, not been implemented.
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4.3.4 Synchronisation of Session Context Access

Inherently, an SSDL engine such as Soya operates in an environment where a
lot of processing has to be done concurrently because many clients may access
a service at the same time. As a consequence, Soya’s runtime has been delib-
erately implemented in a stateless fashion and does not cause synchronisation
problems. Yet access to stateful objects, such as the session context, needs to
be synchronised between concurrently running threads. Still, communicating
with any number of clients simultaneously does not cause any session context
synchronisation problems, because the server maintains a separate context for
each conversation individually.

As soon as clients send many messages simultaneously within the same con-
versation, however, many concurrently running threads will be created on the
server that can access the session context simultaneously. Therefore, access to
the session context needs to be synchronised. To guarantee a consistent, in-
sequence processing of incoming and outgoing messages according to a service’s
protocol, we demarcate the message processing flow into a critical section. Inside
this section, no other thread can access the session context while one is already
processing a message for the same context. The critical section begins when the
session context is assigned to a thread and ends when the message is dispatched
to the application (i.e. when the protocol state machine reflects the new state
of the conversation). In order to enter the critical section, competing threads
must acquire a processing context. This mechanism is shown schematically in
Figure 4.6.
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Figure 4.6: Multiple threads that are using the same session context are syn-
chronised at the message-level in order to guarantee a consistent, in-sequence
processing.
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Not only do we need to synchronise access to the session context for incoming
messages but also for outgoing messages. This is shown in the bottom part of
Figure 4.6, where the service sends a response message via Soya’s client API.
Analogous to the procedure for handling incoming messages, Soya ensures that
no other messages are currently being processed in the same conversation. It
thus likewise needs to first acquire the processing context before it can send an
outgoing message.

4.4 Structural Validation

The structure of incoming and outgoing messages is validated against both
schema and message definitions specified in the service’s SSDL contract. If one
of the two validation steps fails, processing stops and the message is rejected.

Both message header and body elements are taken into consideration for
validation. The former, however, cannot be validated as strictly as the latter,
because this would interfere with the SOAP processing model’s extensibility
mechanism [11]. SOAP nodes can add infrastructure information (e.g. address-
ing, security, etc.) that is likely not defined in the SSDL contract per se. Yet this
does not mean that the structure of these messages is invalid. For this reason,
only headers which have been defined in the contract are actually validated,
while others are silently ignored. In contrast, if the message body contains
elements that are not present in the contract, validation fails.

First, the message is validated against the schema defined in the contract
(e.g. XML Schema validation). Next, Soya tries to match it with a message
description of the SSDL contract. This ensures that the particular combination
of header and body elements is actually a contractually defined message. For
example, assume that header h and body b are both described in the contract’s
schema section but not grouped together as a message. If a SOAP message
with the given elements (i.e. h, b) is processed, schema validation succeeds, yet
message validation will fail.

4.5 Protocol Validation

One of the core components of the Soya runtime is the protocol state machine,
which validates the correct sequence of exchanged messages and decides to
which service method incoming messages are to be dispatched. It is built at
deployment-time from the protocol information captured in the SSDL contract.
Although the classes responsible for building it from protocols are inevitably
protocol framework specific, the resulting state machine is generic and thus
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protocol framework agnostic. It conveys neither information about the proto-
col framework that was used to build it, nor whether the protocol was derived
from C# attributes, XML files or some other abstraction. This gives proto-
col framework designers and implementers a lot of flexibility since the use of
the programming model for defining protocol-related information is decoupled
completely from information used to enact the protocol at runtime.

The incoming and outgoing messages represent the transitions of the state
machine while the states do not have explicit meaning or names. Figure 4.7
shows the state machines that can be inferred from the message exchange pat-
terns (MEPs) defined in the MEP protocol framework [129]. Of course, the
transition symbol variables are replaced with concrete values when the state
machine is constructed.
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Figure 4.7: State machines inferred from message exchange patterns defined in
the MEP protocol framework.

By choosing a common initial state among the different patterns we can
create state machines that represent any combination of the eight simple MEPs
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or multitudes thereof3. Figure 4.8 shows a state machine that combines an
in-only and an out-in MEP.

ε

ε
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m:out

m:in, f:in

m:out

Figure 4.8: A combination of an in-only and an out-in MEP

4.5.1 Dynamic State Pattern

The GoF State Pattern [29, 136] is a well-known design pattern that helps to
control an object’s behaviour by changing its internal state. Normally, one cre-
ates a State interface that defines a number of state transitions as methods,
where each method returns a State instance that represents the new state af-
ter the transition has occurred. The behaviour of each state is encapsulated
in concrete State interface implementations, which allows them to be easily
interchanged.

In a TCP connection implementation, for example, methods such as Open()
or Close() behave differently depending on the state of the connection (i.e.
the concrete State implementation that the state machine is currently using).
Figure 4.9 depicts the class diagram of a TCP connection example. As visible
in the class diagram, each state encapsulates its specific behaviour in a separate
class.

TCPConnection TCPState

TCPEstablished TCPListen TCPClosed

state

Open ( )

Close ( )

Acknowledge ( )
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Close ( )

Acknowledge ( )

Open ( )

Close ( )
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Open ( )

Close ( )

Acknowledge ( )

Open ( )

Close ( )

Acknowledge ( )

state.Open ( )

Figure 4.9: TCP connection class diagram from Gamma et al. [29]

3We can, of course, also combine multiple MEPs of the same type
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In the case of Soya, however, the states are not as clearly defined as in the
TCP connection example. Further, we do not know the states or the transitions
of the state machine at the time of writing Soya, because they will be created
at runtime by a user deploying an SSDL contract.

Still, by slightly twisting the original idea of the State Pattern it can be
used to dynamically build a generic state machine. Instead of implementing the
state behaviour in different classes, however, we encapsulate it in instances of a
generic State class and configure each instance’s behaviour by adding transitions
to it, which are valid for the particular state. Transitions are also modelled in
a generic way and represented by a two-tuple consisting of a transition symbol
and a state where the transition will lead to. In Soya, the transition symbol is
composed by the qualified name of a message and its direction (i.e. incoming
or outgoing). Because of its dynamic nature, we will refer to this pattern as the
Dynamic State Pattern. Figure 4.10 illustrates the relationships of the classes
that participate in it.
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StateMachine

Client

creates

1

+ state : State 

+ Transition ( Object, State ) 

+ final : boolean

+ addTransition ( Transition )

~ canStep ( Object ) : boolean

~ step( Object ) : State

- current : State

+ StateMachine ( State)

+ canStep ( Object ) : boolean

+ step ( Object )

uses

creates

1

Figure 4.10: Classes participating in the Dynamic State Pattern

4.5.2 Usage

Soya provides a generic public API for creating state machines that can be used
by implementers of new protocol frameworks or programming models. For ease
of use, it can be constructed in a non-deterministic way, as this often allows
constructing a given state space in a more concise manner.

First, a user creates a number of states, thereby possibly declaring some of
them final. Then, it creates some transitions and adds them to selected states.
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Finally, it creates a state machine by passing it a reference to the initial state.
Subsequently, the created state machine can be used to step through the state
space and validate input words. If its Step() method is called, it internally
delegates the call to its current state, which checks if it contains a transition
with the required transition symbol. Depending on this evaluation, the method
will return the new state defined by the transition or throw an exception. If
the method returns successfully, the state machine updates its current state
accordingly and waits for the next transition to occur.

4.5.3 Implementation

Because the Soya runtime invokes the protocol state machine for every incoming
and outgoing message, it is crucial that its implementation can execute the
requested transitions efficiently in order to avoid bottlenecks in the processing
logic.

Indeed, the Dynamic State Pattern just described allows creating a fast-
stepping (i.e. constant time) state machine implementation. To achieve this
runtime behaviour, we use a hash table4 for looking up the transitions of a
particular state given a transition symbol. In addition, we compile the state
space upon creating the state machine, in order to further reduce the execution
time of the step operation. This includes performing the following operations:

• eliminating potential non-determinism by creating a deterministic state
machine that is equivalent to the non-deterministic one, such that the for-
mer and the latter recognise the same language, i.e. L(FSA1) = L(FSA2);

• minimising the state space by removing:

– every useless state q, where q is useless iff there is no word ω such
that there is a transition function δ(q0, ω) = q or δ(q, ω) ∈ F ;

– every state q that is equivalent to some other state q′ according to
the following definition:

either δ(q, ω) ∈ F and δ(q′, ω) ∈ F

or δ(q, ω) /∈ F and δ(q′, ω) /∈ F

• detecting the empty language ∅.

4Retrieving or setting a value for a given key implemented as an O(1) operation.
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4.5.4 Decorating the State Machine

After the Soya runtime has successfully validated an incoming message, it needs
to decide to which internal service method it should be dispatched. This decision
is exclusively based on the messaging behaviour defined in the service’s contract
and the state of the current conversation. It hence stands to reason that we
include this dispatching information in the state machine in order to enable
other components to look it up at later processing stages.

4.5.4.1 IExtensibleObject<T> Pattern

To facilitate this, we implemented a mechanism called the IExtensibleObject<T>
Pattern [137]. This pattern allows transitions to be dynamically extended by
attaching other objects that add new state or functionality. Figure 4.11 depicts
the class diagram that shows how extensions can be dynamically aggregated by
extensible objects.

Detach ( T )

IExtensibleObject<T>

Extensions : Collection<T>

IExtension<T>

Attach ( T )

TransitionExtension

<Transition>

Method : MethodInfo

IExtensionCollection<T>

Find<E> ( ) : E

FindAll<E> ( ) : Collection<E>

Transition<Transition>

Symbol : String

State : State

Figure 4.11: Classes participating in the IExtensibleObject<T> Pattern

In Soya, we use this pattern to attach extension objects containing service
method metadata to transitions that are triggered by incoming messages (we
ignore transitions triggered by outgoing messages, because they are not dis-
patched to service methods). As a state transition occurs, event handlers inside
the Soya runtime are notified and extract the method metadata contained in
the extensible transition. Figure 4.12 illustrates how dispatching information is
attached to transitions of the state machine.

4.5.5 Non-Determinism and Ambiguity

In the context of state machines, the introduction of non-determinism does not
provide any extra expression power, i.e. everything a non-deterministic state
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AM  : in

MProcessX(      )A

D
B

CAM  : in M  : out

M  : out
M  : in

MD

MProcessY(      )A

Process(      )

Figure 4.12: Transitions that are triggered by incoming messages are annotated
with metadata that is used to decide to which service method the message
should be dispatched. In the above diagram, message MA is dispatched either
to ProcessX() or ProcessY(), depending on the state of the conversation.

machine can do can be done by a deterministic one and vice versa [138]. How-
ever, the use of non-determinism can make a state machine smaller and easier
to understand [138].

In order to maintain this flexibility, we allow a state machine to be defined
in a non-deterministic way. Upon creating it and compiling the state space,
however, we eliminate potential non-determinism by building an equivalent de-
terministic state machine. This is possible because of the aforementioned equiv-
alence between the two formalisms. At runtime, this allows us to step through
the state space without backtracking, since every transition is specified in a fully
deterministic way.

4.5.5.1 Ambiguous Service Contracts

Translating the non-deterministic into a deterministic model, however, does not
mean that the state transitions are unambiguous in terms of dispatching infor-
mation. An example of an ambiguously defined service contract is illustrated
in Figure 4.13. Because two identical transitions depart from the same state
but define distinct dispatching methods, we cannot determine to which service
method the incoming message should be dispatched.

[Mep(In-Only)]
void ProcessX(MsgA a);

[Mep(Out-In,Out=MsgB)]
void ProcessY(MsgA a);

MsgA:in ProcessX( )
ProcessY( )

Figure 4.13: A deterministically but ambiguously defined service contract

In contrast, Figure 4.14 presents a service contract that has been defined
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unambiguously. Although there are two identical transitions (i.e. MsgA:in),
they do not depart from the same state and to thus not conflict. It is relatively
easy to conceive cases like this where one defines more sophisticated (i.e. non-
MEP) protocol descriptions and the same type of message is dispatched to
distinct service methods, according to a given state of conversation.

[Mep(In-Only)]
void ProcessX(MsgA a);

[Mep(Out-In,Out=MsgB)]
void ProcessY(MsgA a);

MsgA:in

MsgB:out

MsgA:in

ProcessX( )

ProcessY( )

Figure 4.14: An unambiguously defined service contract

However, as we have mentioned before, determinism does not exclude am-
biguity in the same way that no ambiguity does not require determinism. This
is illustrated – as a last example – in Figure 4.15. By translating the non-
deterministic state machine into a deterministic model, it becomes apparent
that it had been defined unambiguously.

a

a

b

c

a

Process( )

Process( )

Process( )

b, c

Figure 4.15: A non-deterministically but unambiguously defined state machine

After minimising the state machine and removing potential non-determinism,
checking for dispatching ambiguity thus becomes a straightforward task. All we
have to do is ensure that only metadata for at most one service method has
been attached to any given transition in the state machine.

4.5.6 Persisting State and Cloning

For every deployed SSDL service, Soya creates exactly one protocol state ma-
chine. Essentially this can be seen as a blueprint for validating the order of
exchanged messages for any conversation. Of course, one service potentially
interacts with a number of clients at the same time and therefore needs to keep
track of where the conversation currently is for each client individually.

For this reason, a separate cloned instance of the protocol state machine is
maintained for each client. As opposed to Soya’s runtime components, which
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are stateless, the state of the protocol state machine needs to be maintained
across multiple message exchanges. For that reason, each conversation has a
separate state machine associated with its session context. However, rather
than duplicating the entire state space for each client, only the reference to the
current state position needs to be copied.

This allows for a convenient programming abstraction, because every client
appears to have its own state machine. At the same time, it does not increase the
memory footprint unnecessarily, consequently allowing the runtime to handle
many clients concurrently.

Similarly, if we want to persist the state of conversations into a relational
database, for example, we only need to persist the blueprint (i.e. the original
state machine instance) and one reference per client to the current state5.

4.6 Message Dispatching

4.6.1 State-Based Method Selection

In SSDL the concept of operations or service invocations does not exist and it is
expected that applications reason about message content and ordering in order
to derive appropriate actions.

Of course, since Soya-based services are built using an object-oriented pro-
gramming language, a local API method is ultimately invoked. Soya processes
incoming messages and decides to which internal method they should be dis-
patched. This decision is exclusively based on the service’s protocol and the
current state of the conversation (i.e. the protocol state machine). Method
names, however, play no role in this decision-making process. In consequence,
this implies that multiple arrivals of the same kind of message can actually be
dispatched to different methods.

Although not being able to capture more than two consecutive messages
makes the MEP SSDL protocol framework a poor candidate for demonstrating
state-based method selection, it can still be used to illustrate the concept. Fig-
ure 4.16 shows two methods for processing the same kind of incoming messages.
ProcessX() is invoked when an unsolicited message of the given type is re-
ceived. In contrast, ProcessY() is only invoked when the service has previously
sent an outgoing message of type MsgB. The right part of the figure, shows the
state machine that is inferred from the protocol definition. Each method on the
left may contain application logic that does something different based on the
conversation state.

5The current Soya release 0.1 provides only an in-memory storage facility.
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[Mep(In-Only)]
public void ProcessX(MsgA a) {
/* application logic */

}

[Mep(Out-In,Out=MsgB)]
public void ProcessY(MsgA a) {
/* application logic */

}

MsgA:in

MsgB:out

MsgA:in

X Y

Figure 4.16: State machine inferred from protocol metadata. X and Y stand
for the methods ProcessX() and ProcessY(), respectively, to which MsgA will
be dispatched.

Without protocol metadata, the two methods in Figure 4.16 would be am-
biguous. In fact, a service developer would need to write application code to
distinguish between the two cases, which we understand might impose a signif-
icant burden on the developer. Therefore, Soya takes advantage of the protocol
metadata to decide to which methods messages need to be dispatched. Present-
ing the developer with this abstraction removes confusion as what needs to be
implemented.

4.6.1.1 Using the Protocol State Machine Decoration

In Section 4.5.4 we have explained how dispatching information is added to the
protocol state machine. Every time a state transition is performed, the protocol
state machine additionally fires an event that contains transition-related data,
including potential dispatching information. As a result, other runtime classes
can subscribe to these events and obtain dispatching data. Later, they use this
data to invoke application logic and dispatch the message.

4.6.2 Asynchronous Operation Invocation

SSDL models interactions between services purely as a collection of exchanged
one-way messages. Indeed, messages are related only through defined messaging
behaviour and correlated by content and conversation state, not operation se-
mantics. This is facilitated by WS-Addressing header blocks inside the messages
and middleware that keeps track of the exchanged messages.

Every actual service invocation thus happens asynchronously, allowing clients
to regain control over the connection immediately after the message has been
validated and dispatched to the application logic (i.e. the service). Essentially,
this decouples the messaging behaviour from operation semantics.

If a client still wants a synchronous interaction behaviour with the service,
it can of course block and wait for a correlated message to be returned. This
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is a purely local programming decision and does not affect the messages on the
wire [139].

4.6.2.1 Decoupling Transport Bindings

SOAP transport bindings, however, may impose temporal constraints on the
message exchange. The HTTP binding, for example, requires that in-out mes-
sage exchange patterns are mapped to HTTP request-response operations. How-
ever, we cannot generally determine when or if a service sends back a response.
Consequently, we do not wait for the application logic to finish processing,
but instead immediately return an empty HTTP 200 - OK response back to the
client, acknowledging that the message has been successfully received and dis-
patched to the service. Some undefined time later (i.e. seconds or days), the
service might send a message back. To do so, a new HTTP request that includes
the response message data is created.

If we used SMTP instead, the behaviour at the transport level would be dif-
ferent, because there would be no requirement to send a transport-level response
to the initial request. At the service-level, however, this change of transport pro-
tocols is completely transparent. This behaviour is illustrated in Figure 4.17.

4.6.2.2 Decoupling Temporal Constraints

By internally calling service methods asynchronously, we also effectively de-
couple the application logic from temporal constraints imposed by transport
bindings, because the semantics of the transport infrastructure are no longer
coupled to service operations. Indeed, this practice allows us to reuse a widely
deployed transport infrastructure (i.e. HTTP) without imposing the semantics
of that infrastructure onto message-oriented services. Further, it has the positive
side-effect that Soya inherently supports long-running interactions.

4.6.2.3 Dealing with Infrastructure and Application Errors

Nevertheless, the fact that the client service does not care about the result of a
one-way invocation does not mean that it does not care if the invocation took
place at all. In fact, if an application requires reliability, additional mecha-
nisms such as, for example, WS-ReliableMessaging [140] should be used, even
for one-way messaging. To understand this better, we found it useful to distin-
guish between errors that can occur in infrastructure and errors that occur in
application logic.

Errors occurring in the infrastructure can range from connection problems
to protocol validation errors. These kind of errors need to be communicated to
the clients (or their middleware), so they will be aware that a given message has
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Client Soya Service

Processing

Incoming

Message

Preparing

Outgoing

Message

HTTP 200 Response (empty)

HTTP Request

HTTP Request

HTTP Response (empty)

Async Invoke

“Callback”

Figure 4.17: The application logic is invoked asynchronously and decoupled
from the used transport protocol.

never reached the service. Using the HTTP example again, we could for example
return a HTTP 5xx - Server Error response, indicating that the message has
not been processed.

Errors that occur in the application logic, on the other hand, need to be
handled by the application. For example, by sending appropriate error messages
to the client that indicate what went wrong. These kind of error messages,
however, are part of the normal application flow. In fact, they are part of the
service contract and hence even subject to be validated by the runtime.

The following example helps illustrating these concepts: A client sends a
CancelOrderMsg to the service and does not care about the result of the invo-
cation, assuming that no further actions need to be taken. The first time, the
client receives a HTTP 301 - Moved Permanently response from the service,
saying that the URI of the service has changed and the message has not been
delivered. The client thus updates the remote endpoint address and re-sends
the message to the new URI. This time the message is dispatched to the ser-
vice successfully, which acknowledges this with a HTTP 200 response and closes
the connection. In the meantime, however, the service application processes
the message and finds that the order cannot be cancelled. It therefore sends a
new HTTP request to the client (address is taken from WS-Addressing ReplyTo
header) containing an application error message along the lines of OrderAlready-
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ShippedMsg.
This example illustrates that the latter kind of errors are part of the normal

application flow and thus should not be handled by middleware infrastructure,
whereas the former should.

4.7 Metadata Generation and Exposure

It is essential that a service exposes its contract, so that other services can derive
how to interoperate with it or reason about it. Upon creating the runtime, Soya
builds an internal model that is subsequently used by its runtime components
(see Section 4.8). This model represents different aspects of the service and its
contract. Although it cannot be exposed directly, it contains all the information
needed to generate SSDL contracts. Consequently, Soya used it to generate
XML infoset [132], which in turn can be serialised into XML and published as
a SSDL contract.

The way this metadata (i.e. SSDL contract) can be retrieved is via HTTP
and the ?ssdl convention. A client basically sends an HTTP GET request to
the base address where the service is located and appends the ssdl parameter to
the request URL. In turn, Soya sends back a HTTP response that contains XML
data representing the SSDL contract. This process is illustrated in Figure 4.18.

Client

Soya Runtime

Infoset

Builder
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Model

HTTP GET + /?ssdl

SSDL / XML

build

use

XML Infoset

Figure 4.18: Metadata is retrieved using HTTP and the ?ssdl convention.

4.8 Building the Runtime

The creation and configuration of both WCF and Soya runtimes is triggered
by deploying a service implementation to a SoyaServiceHost (see Section 3.7).
On the one hand, the custom Soya host coordinates the creation of an internal
service model for subsequent use by runtime components. On the other hand, it
configures WCF runtime parameters and replaces default implementations with
custom runtime logic (which we have discussed throughout this chapter).

Building the runtime involves the following activities, which are also illus-
trated graphically in Figure 4.19:
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1. reflect over service types and process class, interface and attribute infor-
mation;

2. process application configuration files (e.g. service endpoints, custom be-
haviours, etc.);

3. build an internal service model and a protocol state machine blueprint
based on the artefacts obtained in the previous steps;

4. create and configure the WCF and Soya runtimes.

Service Impl.

2

reflect over types

and attributes

load and apply

configuration data

1

build internal

service model and

protocol state machine

3

.NET Assembly

SoyaServiceHost
(contracts, service,

behaviours)

Internal

Model
FSA

(endpoints, bindings,

behaviours)

Configuration

Figure 4.19: The internal service model and protocol state machine are built
from service type and attribute information as well as configuration data.

Soya takes SSDL’s extensible architecture into account and does not work
directly with protocol framework specific classes. In fact, users can add new
protocol framework implementations without having to recompile or rebuild
Soya. In a sense, the internal service model and the protocol state machine
can be seen as an intermediary language between the data captured using the
programming model and the SSDL XML contract. They do not convey protocol
framework related information and can thus be used in a protocol-independent
way. In fact, it does not matter from what source of information these artefacts
were originally derived, both in terms of which protocol framework and which
programming model were used. This effectively decouples the programming
model from the runtime and consequently makes it possible to extend Soya in
multiple ways. One the one hand, support for new protocol frameworks can
be implemented. On the other hand, different programming models can be
conceived, implemented and used (e.g. XML files instead of C# attributes).

Building the internal service model and the protocol state machine is, of
course, dependent on the chosen programming model and protocol framework.
Therefore, implementers of new protocol frameworks and programming models
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must provide the logic for building an internal service model and protocol state
machine.

4.8.1 Building the Internal Service Model

As suggested above, the creation of the internal model is dependent on the
chosen protocol framework or programming model. As a result, the logic to
build the model is delegated and encapsulated in specific classes. These classes
must implement interfaces, which represent common abstractions. Decoupling
specific implementations from runtime creation or execution logic is achieved
using the Abstract Factory Pattern [29] as illustrated in Figure 4.20. Deciding
which IProtocolFactory to use is done automatically at runtime based on the
chosen programming model and configuration parameters.

CreateProtocol ( )
CreateStateMachine ( )

IProtocolFactory

CreateProtocol ( )
CreateStateMachine ( )

MepProtocolFactory

CreateProtocol ( )
CreateStateMachine ( )

ScProtocolFactory

Build ( Type )

Protocol

IProtocolBuilder

ScProtocolBuilder MepProtocolBuilder

creates

BuildDescription ( Type )
AddEndpoint ( ServiceEndpoint )

Ssdl

SsdlDescriptionBuilder

uses

Faults
Messages

Infoset

IProtocol

MepProtocol ScProtocol

builds builds

uses

Figure 4.20: Protocol (in)dependent model creation

4.8.2 Building the Protocol State Machine

The protocol state machine is built in a similar manner to the way the internal
service model is created. Programming model and configuration data determine
which IProtocolFactory implementation should be used, which in turn is used
to create specific IStateMachineBuilder instances. These classes build state ma-
chines based on protocol information defined in IProtocol instances. Of course,
the implementation of protocol and state machine builders must be provided in
a consistent way as a family of classes. The MepStateMachineBuilder, for ex-
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ample, checks if a given IProtocol is indeed of type MepProtocol before it tries
to start building the state machine. Figure 4.21 shows the class diagram of the
classes involved in creating state machines.

CreateProtocol ( )
CreateStateMachine ( )

IProtocolFactory

CreateProtocol ( )
CreateStateMachine ( )

MepProtocolFactory

CreateProtocol ( )
CreateStateMachine ( )

ScProtocolFactory

Build ( IProtocol )

StateMachine

IStateMachineBuilder

ScStateMachineBuilder MepStateMachineBuilder

creates

uses

builds builds

uses

TransitionEvent

StateMachine

StateMachine (State)

Step (string)

CanStep (string) : bool

IsAccepted ( ) : bool

Reset ( )

SoyaRuntime

Figure 4.21: Building the Protocol State Machine



Chapter 5

Case Study

} Placet experiri. ~

— Thomas Mann

This chapter presents a case study in the creation of a service-oriented system
in connection with the Australian lending industry. The services composing
the application use an open standard for exchanging data and thus facilitate
transactions between lending institutions and valuation firms. We specifically
studied two cases of the application and showed how they can be realised with
the aid of Soya and SSDL. On the one hand, this enabled us to validate the
usability of Soya’s programming model and the proper functioning of its runtime
environment. On the other hand, it deepened our understanding of to what
extent SSDL fosters the creation, description and execution of Web Services.
Finally, by implementing a realistic reference case we did not only verify the
applicability of the practices under consideration but also discovered new needs
that would possibly have otherwise been missed.

5.1 Motivation and Background

In the Australian lending industry, processes such as property valuation are still
tedious tasks. A lot of the communication is carried out manually using mail,
fax or telephone. A simple task like changing an incorrectly submitted property
address can take up to three days and thus unnecessarily slow down the entire
valuation process. Because of the low degree of automation, a large number of
staff is needed to process tasks which are of a predominantly mechanical nature.
Other issues include bad communication between lenders and valuation firms,
such as lenders not being informed by valuers of delays in processing a request.

79
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In summary, we can say that the manual system currently used for communi-
cation between different parties is costly, time-consuming and unreliable.

5.1.1 Lending Industry XML Initiative (LIXI)

The Lending Industry XML Initiative (LIXI) is an independent non-profit or-
ganisation that has been established to remove data exchange barriers within
the Australian lending industry [93]. Through the work of LIXI, member organ-
isations are able to provide services to their customers more efficiently and at
lower cost. This is achieved by establishing an open XML standard for the for-
mat and exchange of lending-related data that replaces numerous incompatible
and proprietary approaches.

Members of LIXI come from a broad range of companies from across the
lending industry. They include major banks, mortgage originators and brokers,
mortgage insurers, valuers, settlement agents, trustees and information tech-
nology providers. Together, they participate in working groups that shape the
standards and direction of LIXI.

LIXI has been used in a case study before [141]. This work focused on WSDL
and BPEL and identified issues relating to high complexity and ambiguous
semantics using these approaches.

5.1.2 Property Valuation Process

Term Definition

Requestor Legal entity acting for a lending institution or mort-
gagor who issues the valuation request.

Valuation Firm The firm that processes the valuation request.

Valuer A person acting for a valuation firm who is responsible
for the valuation response details.

Intermediary An entity acting on behalf of multiple valuation firms.

Valuation Request Contains sufficient information for carrying out the re-
quested valuation.

Valuation Response The data set returned in response to a valuation re-
quest.

Table 5.1: LIXI property valuation terminology.

The property valuation process is a simple workflow that starts with an ini-
tial valuation request. The request progresses through a number of processing
stages until the valuation is completed and a response is sent back to the re-
questor. It is in the nature of the business that the period between the valuation
request and the subsequent response may span up to several days. During that
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time requestors, intermediaries and valuation firms can still communicate with
each other by sending messages in either direction. This includes querying and
sending updates of the valuation request’s status, cancelling the request, re-
negotiating the fees and so forth. Further, the actual processing of the messages
often still depends on human activities, such as a manager accepting or rejecting
a fee change, a valuer entering valuation data after inspecting a property, etc.

Throughout its lifecycle, a valuation request progresses through several dif-
ferent processing stages. Each stage is defined by LIXI and has a status code
that can be used to indicate at which stage a valuation request is within this
processing cycle. This is illustrated in Figure 5.1. The corresponding workflow,
however, is implemented by a service internally and does therefore not affect
the protocol directly.

1. Instructed

2. Accepted

10. Cancelled

3. Assigned 4. InProgress 5. Inspected 7. Completed
6. Awaiting

Authorisation

9. Amendment

Required

   8. Finalised 11. Delayed

Figure 5.1: The lifecycle of a valuation request.

5.2 Approach

The two cases that we studied involved a number of Web Services that commu-
nicated with each other by exchanging some predefined messages according to
a business protocol. Although the two cases had many common characteristics,
they differed from each other in terms of the business protocol’s complexity and
the number of involved parties. Notwithstanding, our focus and method differed
for each case. During the first case, we concentrated on Soya’s programming
model and its runtime behaviour. To do so, we created an executable implemen-
tation of the services. Although we captured the protocol using the MEP proto-
col framework, we were still able to investigate the runtime in a generic way, as a
result of its protocol framework independence (see Section 4.8). The focus of the
second case was to establish if SSDL’s other protocol frameworks, specifically
Sequencing Constraints (SC) [98], were powerful enough to express the given
business protocol. Because the development process was the same as in the
previous case, we concentrated solely on the protocol description. Since Soya’s
programming model does currently only support the MEP protocol framework,
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we modelled the protocol description directly in XML. Further, we re-modelled
the service description including protocol information using WSDL and BPEL
and compared the results.

In general, we aimed at establishing if Soya and SSDL could be used to
create the given application and if their use implied significant benefits or draw-
backs compared to incumbent approaches. Further, we wanted to find out if
Soya and SSDL were sufficiently expressive to capture the relevant aspects of
our services; how much effort was required in creating them; if the developed
technical solution aligned well with the business case; if employing Soya and
SSDL naturally lead to service-oriented application design.

5.3 Case One: Property Valuation

5.3.1 Focus

The target of the first case in our study was primarily Soya’s programming
model and runtime environment. Not only did we want to establish if the
offered programming abstractions could be used to create the given application,
but also if they facilitated the development process and fostered service-oriented
design. Further, we wanted to affirm that Soya’s runtime behaviour including
message processing, contract enactment, dispatching and so forth worked as
expected.

5.3.2 Case Description

Our first case involved a requestor that communicated directly with a valuation
firm. An example of a typical communication between the two services is shown
as a sequence diagram in Figure 5.2. First, the requestor sends a valuation re-
quest to the valuation firm. Then, after automatically performing some validity
checks on the incoming request, the valuation firm assigns it to one of its em-
ployees. After the employee has been notified, she decides that the requested fee
is not adequate. She hence delays the valuation request and sends a fee change
request back to the requestor. The requestor, however, does not accept the fee
change request. Therefore, the valuation firm sends yet another fee change re-
quest, which is accepted by the requestor this time and thus subsequently also
by the valuation firm. After the successful fee-negotiation, the valuation firm
informs somebody to have a look at the property and internally updates the sta-
tus of the request to in-progress. Some days later, after the requestor still has
not heard anything from the valuation firm, it sends a status enquiry regarding
the request. The valuation firm in turn replies that the valuation is inProgress.
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Finally, the valuer that inspected the property enters the valuation data into
the valuation firm’s system. Internally, this updates the status of the request to
inspected. After all the valuation data has been entered, the system updates the
status to completed and sends the valuation response to the requestor. Once the
response has been sent, the status of the request is updated one more time to
finalised. On the requestor side, the service receives the valuation data, which
concludes the conversation between the two services.

Status (Finalised)

Requestor Valuation Firm

Status (Assigned/Delayed)

Status (InProgress)

Status (Inspected/Completed)

Status (InProgress)

StatusRequest

FeeChangeAccepted

FeeChangeRequest

FeeChangeRequest

Status (Delayed)

FeeChangeRejected

ValuationResponse

Status (Accepted)

ValuationRequest

Figure 5.2: A typical conversation between a requestor and a valuation firm.

Of course, the described conversation is one of many such possible conversa-
tions. Figure 5.3 represents the actual business protocol between requestor and
valuation firm in a more generic way as a state machine. Although the shown
diagram represents the view of the incoming and outgoing messages from the
requestor’s point of view, the valuation firm’s perspective can be derived by
simply inverting the direction attributes on the state transitions.

The protocol defines that the requestor sends an initial valuation request,
which might or might not be acknowledged with a Status message. At this
point, a number of possible interactions can happen. The requestor can, for
example, receive a FeeChangeRequest, which must be either accepted or rejected.
Further, the requestor might enquire about the request’s status, in which case
the valuation firm must reply. Moreover, the valuation firm can send any number
of Status updates at arbitrary intervals. In addition, these interactions are all
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Figure 5.3: The valuation business protocol from requestor’s perspective.

optional and may be repeated and intermixed in an arbitrary order. Finally,
the conversation is terminated at some point, if either the requestor cancels
the request, the valuation firm declines the request (this corresponds to the s’
transition to the final state, because the firm actually sends a Status message)
or if the inspection was performed successfully and a ValuationResponse is sent
back to the requestor.

5.3.3 Protocol Translation

Before we could implement the business protocol, we needed to translate it into
a form that could be captured with the MEP protocol framework. Since the
valuation protocol was not available in a formal or machine-processable form,
we had to do the transformations by hand. In fact, even the state machine
shown in Figure 5.3 was derived manually from the LIXI specification. First,
we identified the messages and their direction (i.e. the state transitions). Next,
we correlated them into the MEPs shown in Table 5.2. Finally, we did the
same for the valuation firm, by simply inverting the direction attributes on the
patterns.

Pattern Messages

out-optional-in out: ValuationRequestMsg, in: StatusMsg

in-only in:StatusMsg

out-in out:StatusRequestMsg, in:StatusMsg

in-out in:FeeChangeRequestMsg, out:FeeChangeRejectedMsg

in-out in:FeeChangeRequestMsg, out:FeeChangeAcceptedMsg

in-only in:ValuationResponseMsg

out-only out:CancelValuationMsg

Table 5.2: Message exchange patterns derived from valuation process protocol.
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By combining the described MEPs into a state machine according to their
definition in Figure 4.7, we obtained the state machine depicted in Figure 5.4.
Inevitably, some protocol information was lost in the translation process as a
result of the insufficient expression power of the MEPs. Consequently, messages
could have been dispatched in the course of a conversation that our application
code did not expect, because they were not specified. Similarly, our implemen-
tation could have sent outgoing messages that did not adhere to the business
protocol.

v’

v

s

s’ f

f’, f’’

s’

v, s’, c, v’

Figure 5.4: The actual protocol defined by the MEP patterns in Table 5.2.

The defined MEP protocol is hence just an approximation of the actual
business protocol (see Figure 5.5). As a matter of fact, it can easily be shown
that the implemented protocol is less restrictive than the original because it
does not succeed in modelling the exclusion of all disallowed interactions. For
example, it is possible that the requestor sends a StatusRequestMsg even though
it has not sent a ValuationRequestMsg previously.

Implemented

Specified

Figure 5.5: Allowed interactions of business protocol compared to implemented
MEP protocol.

The cause for this mismatch is the fact that the eight simple patterns de-
fined in the MEP protocol framework were not sufficient to express the required
business protocol in an accurate manner. In fact, these patterns do not allow
capturing message exchanges that span more than two messages (one incoming
and one outgoing). Therefore, we could not model the fact that a valuation
request, for example, might be followed by some status and fee negotiation
messages and then by a valuation response, because it involved more than two
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messages.
This is not a limitation of Soya’s programming model or SSDL per se, but a

restriction of the MEP protocol framework. As a matter of fact, we will see in
the second case of our study that other SSDL protocol frameworks can be used
to represent business protocols more accurately.

5.3.4 Development Process

5.3.4.1 Message Definition

All the messages that can be exchanged by the requestor and the valuation
firm were defined in an XML schema provided by LIXI. Instead of creating the
data contracts according to the schema manually, we used it to generate the
data contract classes using a configurable .NET [142] code generator. Although
the code generator produced acceptable results, we still had to make manual
adjustments to the generated code. For example, it was not possible to specify
that a data member of a data contract should be serialised as an XML attribute,
because the generator did not support this kind of XML projection. Thus,
schemas that required the use of XML attributes were not supported per se.
The following simple LIXI XML schema element, for example, could not be
represented as a data contract, because it defined an XML attribute:

<xs:complexType name="PropertyType">

<xs:attribute name="Name" use="required" type="xs:string"/>

</xs:complexType>

Nevertheless, the generator could be configured to output types that use a
custom formatting implementation for serialisation and deserialisation. Conse-
quently, these types could store anything that could be represented in XML.
Although this solved the XML attribute problem, the generated code was not
particularly useful for our application because it was too generic. In fact, by
inferring XML schema from the generated type, we obtained a schema that
represented the XML schema type anyType.

For this reason, we introduced a strongly typed member that represented the
XML attribute and provided a custom implementation for reading and writing
to and from XML respectively. Further, we implemented a method that loaded
the XML schema for the implemented type according to its definition in the LIXI
schema. By using the described approach we achieved the required mapping.
Indeed, this method is very powerful in general and can be used to represent
even the most complex XML data structures.

After generating the data contracts, we created the message contracts. Un-
like generating the former, there was no support for creating the latter from
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an XML schema. Therefore, we created the message contracts manually. Since
LIXI did not define its messages with respect to SOAP (i.e. headers and bod-
ies), we included the defined LIXI messages without modification in the body
of the message contracts. Furthermore, we included the valuation request id
in the header of most message contracts, so that it would be transmitted in
the SOAP header in addition to the main payload in the SOAP body. On the
application-level this allowed us to correlate incoming messages with the respec-
tive valuation request. Correlating messages into one continuous conversation,
however, was not done using this application header but automatically handled
by Soya through means of WS-Addressing headers. Nevertheless, we found it
useful to have direct access to the valuation request id and by putting it in the
SOAP header, we did not have to change the LIXI XML schema. Since we
only had to create eight message classes, the associated effort was insignificant.
Yet given the simple but tedious nature of the task, we hold the opinion that it
would be useful to write a small code generator if more classes needed to be gen-
erated. At the same time, this would also help keeping the classes synchronised
with the XML schema.

5.3.4.2 Protocol Definition

Because we had translated the protocol into MEPs earlier, we only needed to
apply them as C# attributes to the service contract. This process was relatively
straightforward as we just defined service operations for processing incoming
messages and decorated them with the protocol metadata. While creating the
service interface and the attributes, we were able to focus solely on the service
contract. As a result, we did not have to be concerned about implementation
details such as, for example, operation names. Figure 5.6 shows the requestor’s
service contract.

The top-most attribute declares that a CancelValuationMsg can be sent at
any time. It is attached directly to the interface because it is an OutOnly
attribute and hence does not require an associated method for processing an
incoming message. The metadata attached to the first method defines that a
StatusMsg can be received in an unsolicited manner (InOnly), compulsorily in
response to a StatusRequestMsg (OutIn) or optionally in response to a Valua-
tionRequestMsg (OutOptionalIn). The attributes on the second method state
that a FeeChangeRequestMsg can be received at any time but must be followed
by an outgoing FeeChangeAcceptedMsg or FeeChangeRejectedMsg. Finally, the
last method defines that a ValuationResponseMsg can be received at any time.
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[Mep(Style=MepStyle.OutOnly, Out=typeof(CancelValuationMsg))]

public interface IRequestorService {

[Mep(Style=MepStyle.InOnly)]

[Mep(Style=MepStyle.OutIn, Out=typeof(StatusRequestMsg))]

[Mep(Style=MepStyle.OutOptionalIn, Out=typeof(ValuationRequestMsg))]

void Process(StatusMsg msg);

[Mep(Style=MepStyle.InOut, Out=typeof(FeeChangeAcceptedMsg))]

[Mep(Style=MepStyle.InOut, Out=typeof(FeeChangeRejectedMsg))]

void Process(FeeChangeRequestMsg msg);

[Mep(Style=MepStyle.InOnly)]

void Process(ValuationResponseMsg msg);

}

Figure 5.6: The service contract specified using Soya’s programming model and
the MEP protocol framework.

5.3.4.3 Contract Implementation

Subsequently, we implemented the defined service interface. In our case study,
the requestor and valuation firm both used humans to process the requests
and only a small part of the entire process was actually handled automatically.
Apart from storing and retrieving valuation requests to and from the data tier,
our service implementation therefore mainly delegated the requests by sending
notifications to employees. The employees in turn interacted with the system
through interactive user interfaces.

Both sides used Soya’s client API to send messages. In case the request
was processed automatically (e.g. a status query), the service implementation
handled the request automatically and potentially sent a response immediately
from within the service method. This is illustrated in the following example
which shows how a status request that is handled automatically by the valuation
firm:

public void Process(StatusRequestMsg msg) {

string id = msg.StatusRequest.Id;

ValuationRequest req = ValuationRequestDAO.Instance.Load(id);

SoyaServiceHost.Reply(Commons.ConvertToMsg(new StatusMsg(req.Status)));

}

If, however, the service operation required human interaction, we normally
persisted the client for future reference and in order to free resources. Later, it
was loaded back into memory again and used to continue existing conversations
and send outgoing messages. This is illustrated in the following code snippet,
which sends the valuation response to the requestor, after all the data had been
entered by a valuer:
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ValuationResponse res = ... // created from data entered by valuer

SoyaClient client = SoyaClientDAO.Instance.Load(requestId);

client.Send(Commons.ConvertToMessage(new ValuationResponseMsg(res)));

5.3.4.4 Configuration and Deployment

The final step in setting up our case consisted in specifying the (HTTP) end-
points for both services in their respective configuration files. Because both
requestor and valuation firm could send messages freely in either direction, they
were required to have public endpoint addresses. In the requestor’s configura-
tion we additionally had to define the endpoint address of the valuation firm,
because the requestor needed this information in order to send the first message.
Conversely, the valuation firm did not need to know the endpoint address of the
requestor in advance, because it retrieved this information from the ReplyTo
header contained inside the messages it received. The corresponding inferred
SSDL contract can be found in Appendix 7.3.

5.3.4.5 Execution

Finally, we executed the two services. The code snippet below shows how the
requestor creates and opens its service host on line 1 and 2, respectively. It then
acquires a client from that host on line 3. This client is linked to the host in
the sense that it adds the host’s endpoint address to the ReplyTo header of the
messages it sends. Further, it represents a reference to the conversation between
the requestor and valuation firm and can thus later be used to continue the ex-
isting conversation. The endpoint address of the valuation firm is automatically
retrieved from a configuration file, but could also have been passed into the
GetClient() method. The valuation request is created on line 4 by using input
data from a valuer. Finally, on line 5, the message is sent to the valuation firm.

1 SoyaServiceHost host = new SoyaServiceHost(typeof(RequestorServiceImpl));

2 host.Open();

3 SoyaClient client = host.GetClient();

4 Message valuationRequest = ...

5 client.Send(valuationRequest);

As we have already mentioned, most of the processing of the requests on
either side involved human interaction. As a result, we created a simple user
interface that allowed requestors and valuation firms to interact with the sys-
tem. This is shown in Figure 5.7. The human input either directly triggered
new message exchanges (e.g. accepting a request immediately sent a Status up-
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date message) or was used as input in future message exchanges (e.g. filling in
valuation response data).

Figure 5.7: Interactive console session between requestor (back) and valuation
firm (front).

5.3.5 Discussion

5.3.5.1 Simplicity & Development Effort

Because we were given an XML schema, we were able to generate the data con-
tracts without significant effort. The only time-consuming task at this stage was
providing a custom serialisation and deserialisation implementation for types
using XML attributes, because the data contract generator was not able to
handle this situation. Unfortunately, the required effort for accomplishing this
relatively simple and common task was disproportional. Considering that XML
attributes are an essential part of most XML documents, we think that appro-
priate mechanisms for capturing them in data contracts or better tool support
for generating source code should be provided in future. Still, the task was
mechanical to a considerable extent and we indeed believe that by leveraging
the generator, it could easily be automated. The same is true for creating the
message contract classes. It is a mechanical task and thus a good candidate for
being executed by a code generator.

Applying the extracted patterns to the service contract using Soya’s pro-
gramming model was again an almost mechanical task. We just had to look at
the extracted patterns and identify the set of incoming messages types. Then
we wrote one service method signature for each distinct type and applied the
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MEP to it. In case two or more patterns shared the same input message type,
we just added multiple MEP attributes to the service method in any order.
Again, because of the mechanical and straightforward nature of this task, we
think that it could also be automated by a tool.

5.3.5.2 Service-Orientation

All through the development process, the main abstraction we were working
with was the message. The data structures defined in LIXI were used as payload
in messages. The interaction protocol was defined using MEPs which in turn
were defined using messages. The service interface was defined using messages.
And finally the data structures that our service implementation received and
sent were messages. Therefore, we never had to give up this message-oriented
perspective.

To contrast this with an operation-centric approach, we will consider two
examples from our case study and compare how we would have implemented
them in an operation-centric solution. According to our protocol a StatusRe-
questMsg must be followed by a StatusMsg. This corresponds to an in-out MEP.
If we would correlate the message using operations, we could have defined an
operation like, for example, GetStatus(StatusRequestMsg msg) returning a Sta-
tusMsg.

In the above case, this approach makes sense. Notwithstanding, it is limited
to these kind of simple scenarios. By looking at another part of the proto-
col, we see that a FeeChangeRequestMsg must be responded to with either a
FeeChangeAcceptedMsg or a FeeChangeRejectedMsg. Because this part of the
protocol can have two possible outcomes, we can no longer represent it using the
operation-abstraction. Although there are workarounds to this problem, they
have disadvantages.

We could, for example, use a one-way operation and provide a callback
interface through which we can send either of the two messages. Yet by doing
this, we are introducing a new API (the callback API) and mixing it with the
operation API. More importantly, we loose the information of what can actually
be sent back after a FeeChangeRequestMsg has been received. This fact is no
longer visible from the service interface or description and hence requires both
service developers and service consumers to know interaction semantics defined
outside the scope of the machine-processable format.

Another solution is to abstract the two return types into a common type (e.g.
FeeChangeResponseMsg) and introduce an attribute that facilitates distinguish-
ing between the two former types (e.g. type=accepted/rejected). As a result, we
would have only one response message type and could therefore map it to an
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operation. Unfortunately, this approach necessitates changing the LIXI XML
schema or creating an intermediary schema. Further, it requires additional code
inside the application logic that parses the message content in order to find out
whether it needs to execute the logic that is responsible for handling either an
accepted or a rejected fee change request.

In both solutions of the operation-centric approach, the changes made to the
implementation are propagated to the outside world and have an effect on the
web service’s contract (i.e. service description including XML schema), violating
service encapsulation and service-oriented design principles.

Conversely, Soya and SSDL forced us to think only in terms of message
exchanges throughout the development process, which naturally led to a service-
oriented design.

5.3.5.3 Soya Programming Model & Runtime

Soya’s programming model allowed us to express the complete MEP protocol
with 7 lines of code. Because the MEP attributes in Soya directly reflect all
the existing MEPs, we had no difficulties representing them in code. While
implementing the case for our study, however, we wanted the service to use the
LIXI XML schema instead of using the one inferred from the data contracts. Ini-
tially, this was not possible in Soya. As a result, we implemented this additional
feature and added it to Soya’s codebase.

The runtime environment worked as expected. Upon deployment, the in-
ferred SSDL contract reflected the MEPs that we had specified using the C#
attributes and could be accessed via HTTP. The services communicated success-
fully with each other via the specified endpoints. The incoming messages were
properly validated against the schema and message definitions in the contract
and dispatched to the correct local service methods.

5.3.5.4 MEP Protocol Framework

We mentioned that we formalised the business protocol into a state machine
representation. Although the MEP description could then be derived in a fairly
direct manner, it still was a manual trial and error process that did not follow
any formal schemes. It required us to mentally partition and re-think the pro-
tocol into MEPs and therefore to translate a business protocol into a technical
representation of it. The resulting description did therefore not only miss some
aspects of the protocol, but was also dissimilar to the original.
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5.4 Case Two: Intermediary

5.4.1 Focus

In the previous section we have shown that Soya’s programming model simplified
the development process and that its runtime environment could be used to
execute SSDL-based services. Yet we also concluded that the MEP protocol
framework was not expressive enough to model the given business protocol. In
the case presented in this section we therefore wanted to establish if SSDL’s more
powerful Sequencing Constraints (SC) protocol framework [98] could represent
the protocol more accurately.

Since the second case differed from the first only in terms of its business
protocol, we focused solely on this aspect. Because Soya currently does not
offer mechanisms to capture SC protocols, we created the protocol description
directly in XML. Although this procedure did not directly involve Soya, it was an
important step in determining the future direction of both Soya and SSDL. By
showing that SC can be used to model even complex protocols, we would have
strong reasons justifying the effort to implement direct programming support
for this protocol framework in Soya.

Further, we re-implemented the given case using WSDL and BPEL in order
to compare it against SSDL and SC in terms of expressiveness, complexity, ease
of use and service-orientation.

5.4.2 Case Description

Although the XML schema, the transferred messages, the business goal and
so forth of the second case in our study was the same as before, the business
protocol was more complex and involved an additional service party. The re-
questor did not communicate with a valuation firm directly, but instead with an
intermediary. The intermediary in turn communicated and negotiated with an
arbitrary number of valuation firms. Based on the incoming request and some
business criteria, the intermediary selected the most appropriate valuation firm
from a list of potential candidates. Because, ultimately, only one firm performed
the valuation, the intermediary had to ensure that it cancelled pending valuation
requests accordingly.

Figure 5.8 illustrates this scenario using an example. The requestor sends
a valuation request to the intermediary. Based on the incoming request (e.g.
postcode, due date, etc.) the intermediary retrieves a list of potential valuation
firms from an internal source and forwards the request to each one. In the
given example, the second valuation firm accepts the request immediately and
thus gets the order. Nevertheless, at this point the valuation firms could have
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also sent requests back to the intermediary to re-negotiate the fees. Essentially,
the possible message exchanges between intermediary and valuation firms are
the same as the ones in the previous section between requestor and valuation
firm. As soon as the intermediary receives the acceptance message, it cancels
the other two pending requests with valuation firm one and three. Apart from
the no longer present fee negotiation, the behaviour between the requestor and
the intermediary is also the same as in the previous section between requestor
and valuation firm. Consequently, the requestor can, for example, send status
enquiries to the intermediary at any time. As soon as the intermediary receives
the valuation response from the chosen valuation firm, it forwards it to the
requestor, which concludes the conversation.

Status (...)

StatusRequest

ValuationResponse

Status (Accepted)

ValuationRequest

GetValuationFirms

ValuationRequest

CancelValuation

Requestor Intermediary Val. Firm 1

ValuationRequest

StatusRequest

Status(Accepted)

Status(...)

ValuationResponse

Val. Firm 2

ValuationRequest

CancelValuation

Val. Firm n

Figure 5.8: A typical conversation between a requestor, intermediary and a
number of valuation firms.

Modelling the illustrated scenario posed a number of challenges. First, the
intermediary had to communicate with two different parties and hence distin-
guish between conversations. Second, the interactions with the requestor and
the valuation firms were required to occur concurrently, but still demanded for
some level of synchronisation. Third, the intermediary needed to communicate
with multiple instances of valuation firms concurrently. Fourth, the number and
physical locations of the valuation firms had to be determined at runtime in a
dynamic fashion.

As a result, we could no longer clearly represent the interactions using a state
machine the way we did in the previous sections. Nevertheless, we abstracted
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and summarised the intermediary’s protocol in Figure 5.9. Essentially, the main
diagram represents the communication with the requestor. The red square box
in the middle stands for the interactions with the valuer. As we have just
described, these interactions run in parallel to the ones with the requestor.
Additionally, an arbitrary number of these interactions can execute concurrently.

s’

v c, s’, v’

s’s

s’s

f

v

f’, f’’

c, s’, v’ε, s’

multiple instances

concurrent executionRequestor

Valuer

Figure 5.9: The intermediary’s protocol. The red box can fork an arbitrary
number of state machines that run concurrently to the main one and each other.

5.4.3 Sequencing Constraints

As we can see, the intermediary’s interaction behaviour was rather complex.
Surprisingly, the SC protocol framework allowed describing this behaviour in
a fairly concise way. Unfortunately, however, it does not provide native sup-
port for representing iterative structures, which required us to translate these
structures into recursive representations.

5.4.3.1 Representing Cycles

In our first trial to model the cycles in the communication between the inter-
mediary and a valuation firm, we used a multiple element. The semantics of
this element are defined analogously to the Replication (written ! ) construct in
π-calculus [97]. Unfortunately, this implies that its children can occur a mul-
tiple number of times in parallel [98], which leads to the state machine shown
in Figure 5.10. As we can see, this is a different, and in fact less restrictive
state machine than the one defined by the business protocol. As it turned out,
we could not use the multiple element for modelling the iterative structures be-
cause several instances of a structure could have occurred concurrently and thus
potentially interleaved with each other in a capricious manner.

In our second attempt, we expressed the iterations using recursive references
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v

f, f’, f’’, s, s’

ε, s’ c, s’, v’

Figure 5.10: Graphical representation of SC protocol using multiple element.

to sub-protocols. To illustrate this better, we will, for now, consider only the
part of the business protocol defining that a StatusRequestMsg must be followed
by a StatusMsg and that this pattern can occur zero or more times. By ignoring
the direction attribute of the transition symbols, we can rewrite this part in a
compact way using the following regular expression:

(ss′)∗

Because the rules of regular languages are more restrictive than the produc-
tions of context-free languages [138] we can also substitute the above language
using a context-free grammar:

X → ss′X | ε

Based on the observation that not only is XML a context-free language [143]
but that it can be used also for describing its own structure [73], we represented
the above grammar in XML. Of course, an associated XML schema might dis-
allow such a definition. In the case of SSDL’s SC protocol framework, however,
this was possible. The code in Figure 5.11 shows how we modelled the above
grammar. The key is the sc:protocolref element that allows for creating arbitrary
cycles by referencing itself. Also note the sc:nothing element that corresponds
to ε above and guarantees that the protocol can exit the cycle. Consequently, we
partitioned the entire protocol into sub-protocols1 as required by the iterative
structures and then referenced them in this recursive fashion.

By using this approach, we rewrote the complete business protocol between
intermediary and valuation firm with the following regular expression:

v(s′|(f(f′|f′′))|(ss′))∗(s′|c|v′)

Similarly to above, we then represented it using the context-free grammar
below:

1Since the SC specification does not clearly define the semantics of multiple sc:protocol
elements, we assumed that the first one is considered as the only entry point to the protocol.
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<sc:protocol name="recurse">

<sc:choice>

<sc:sequence>

<ssdl:msgref ref="StatusRequestMsg" direction="out"/>

<ssdl:msgref ref="StatusMsg" direction="in"/>

</sc:sequence>

<sc:protocolref ref="recurse"/>

<sc:nothing/>

</sc:choice>

</sc:protocol>

Figure 5.11: A loop specified in the SC protocol framework.

X → vAB

A → A′A | ε

A′ → s′ | fA′′ | ss′

A′′ → f′ | f′′

B → s′ | c | v′

As we can see, A is defined recursively. We therefore defined a separate
protocol for that part. The protocol description that we obtained by translating
the above grammar is depicted in Figure 5.12. Note that there are two separate
protocols (line 1 and 12). Further note the recursive calls on line 4 and 26.

5.4.3.2 Protocol Definition

After identifying and translating the iterative structures, we described the re-
mainder of the protocol. Although the complete protocol is not listed in Fig-
ure 5.13 due to its verbosity and similarity with previously presented parts, it
can be found in its entirety in Appendix 7.3. The keys in modelling the de-
sired protocol were the sc:participant elements (abbr. sc:p) on line 1 and 2, the
sc:parallel element on line 5 and the sc:multiple element on line 7.

The sc:participant element allowed us to distinguish between interactions
with the requestor and those with the valuation firms. The sc:parallel element
was used to model that the intermediary and the requestor could communicate
concurrently to the conversations between the intermediary and the valuation
firms. This corresponded to the interactions that go to and from the red square
box in Figure 5.9. Finally, the sc:multiple element made it possible to capture
the fact that the intermediary might have conversations with more than one
valuation firm at the same time.



98 CHAPTER 5. CASE STUDY

1 <sc:protocol name="intermediary-valuer">

2 <sc:sequence>

3 <ssdl:msgref ref="m:ValuationRequestMsg" direction="out"/>

4 <sc:protocolref ref="recurse"/>

5 <sc:choice>

6 <ssdl:msgref ref="StatusMsg" direction="in" />

7 <ssdl:msgref ref="CancelValuationMsg" direction="out" />

8 <ssdl:msgref ref="ValuationResponseMsg" direction="in" />

9 </sc:choice>

10 </sc:sequence>

11 </sc:protocol>

12 <sc:protocol name="recurse">

13 <sc:choice>

14 <ssdl:msgref ref="m:StatusMsg" direction="in" />

15 <sc:sequence>

16 <ssdl:msgref ref="m:FeeChangeRequestMsg" direction="out" />

17 <sc:choice>

18 <ssdl:msgref ref="m:FeeChangeAcceptedMsg" direction="in" />

19 <ssdl:msgref ref="m:FeeChangeRejectedMsg" direction="in" />

20 </sc:choice>

21 </sc:sequence>

22 <sc:sequence>

23 <ssdl:msgref ref="StatusRequestMsg" direction="out" />

24 <ssdl:msgref ref="StatusMsg" direction="in" />

25 </sc:sequence>

26 <sc:protocolref ref="recurse"/>

27 <sc:nothing/>

28 </sc:choice>

29 </sc:protocol>

Figure 5.12: The protocol between intermediary and valuation firm described
using SC.

1 <sc:participant name="Req"/>

2 <sc:participant name="Val"/>

3 <sc:protocol name="Intermediary">

4 <ssdl:msgref ref="m:ValuationRequestMsg" direction="in" sc:p="Req"/>

5 <sc:parallel>

6 <!-- interactions with requestor -->

7 <sc:multiple>

8 <!-- interactions with valuation firm(s) -->

9 </sc:multiple>

10 </sc:parallel>

11 <sc:choice>

12 <ssdl:msgref ref="StatusMsg" direction="out" sc:p="Req"/>

13 <ssdl:msgref ref="CancelValuationMsg" direction="in" sc:p="Req"/>

14 <ssdl:msgref ref="ValuationResponseMsg" direction="out" sc:p="Req"/>

15 </sc:choice>

16 </sc:protocol>

Figure 5.13: The intermediary’s protocol captured using SC.
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While we modelled the above case, we observed two interesting aspects or
potential problems which are related to the communication with multiple val-
uation firms. The first one was the positive realisation that we could describe
a protocol that involved a number of valuation firms which were not known at
runtime. This is possible because at design-time, the contract is not bound to
a particular valuation firm instance, i.e. a particular endpoint. Based on our
experience with Soya and the features of current workflow engines [144] we can
safely assume that setting or modifying endpoint addresses at runtime can be
facilitated by SSDL runtimes. Of course, the valuation firms must all adhere to
the same contract in terms of message types and their relative order of exchange,
but their physical location is of no relevance to the contract per se. In fact, the
SSDL specification does not define how physical endpoints should be mapped to
participants. We therefore assumed that an SSDL implementation could map
one participant to multiple physical endpoints. In our case, the participant Val
would have been mapped to the endpoint addresses of valuation firm one, two
and three.

Unfortunately, however, the semantics of the sc:multiple element allowed its
children to interleave with each other quite arbitrarily as we have already es-
tablished earlier. Of course, on the one hand, this was exactly what we wanted
(i.e. having conversations with multiple valuation firms at the same time) and
assumed that middleware would take care of this, by distinguishing among con-
versations with different valuation firms. On the other hand, the mentioned el-
ement also allowed multiple concurrent invocations within a single conversation
with one valuation firm. Consequently, some interleaving could have occurred.
Essentially, this was the same problem that we encountered in the previous sec-
tion and solved using the recursive sc:protocolref call. Yet in this case this was
not possible, because in addition to modelling the loop, its iterations actually
had to take place at the same time in parallel.

5.4.4 Discussion

Despite the SC protocol framework’s lightweight and small choice of constructs,
we succeeded in modelling all the aspects of the given business protocol to a
satisfactory degree. The procedure to obtain the final protocol description, how-
ever, involved some effort. First, translating the iterative structures into their
respective recursive representations did not only require re-thinking and addi-
tional development effort, but also resulted in a description that was dissimilar
and less readable than the original. We believe that the protocol description
could have been more similar to the actual business protocol, if we could have
expressed the iterations using, for example, a while loop. Although it would
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not increase the expression power of the language per se, we hold the opinion
that adding some new carefully chosen elements could produce more natural,
understandable and concise protocol descriptions. Second, in order to describe
the protocol between intermediary and valuation firms, which we represented
on less than half a line using a regular expression, we needed about 30 lines
of XML code using SC. Still, we are aware that this comparison needs to be
put into perspective to some extent for the general case, considering that the
SC protocol framework can express behaviours that regular expressions cannot
(e.g. concurrency, multi-party conversation, message flow direction, etc.). As a
matter of fact, we will see later that other workflow languages such as BPEL
produce even more verbose protocol descriptions.

We have mentioned that our final protocol description allowed for some ar-
bitrary interleaving. From a practical perspective, however, we did not consider
this to be a problem of major significance in our case. First, because the initial
message of the potentially interleaving sequence was outgoing, meaning that our
own service implementation would have had to incorrectly send two valuation
requests to the same valuation firm in order to trigger this faulty behaviour.
Second, because we believe that this problem can be solved on the middleware
level. For example, an SSDL engine could be instructed to not create duplicate
conversations for the same logical connection. If we consider our previous map-
ping example again, where the participant Val was mapped to valuation firm
one, two and three, the middleware could ensure that at most three conversa-
tions (i.e. one for each endpoint) are forked off the main process.

Still, we do not think that it is advantageous if the protocol description at-
tempts to model every detail of the business protocol. Indeed, the word to model
means “to devise a simplified description of a system” [145]. For example, our
protocol model did not express the fact that only one valuation firm gets the
order while the others are cancelled. Hence, a more precise model could have
possibly captured this feature and perhaps even expressed that exactly n−1 can-
cel requests are sent to n valuation firms after the valuation has been accepted
by one firm. Nevertheless, we do not think that this degree of accuracy in a
service description would be of great benefit to other services. On the contrary,
it would increase the complexity of the description and thus make it harder for
service consumers to see the essential features of the protocol. Of course, we re-
alise that deciding what should be included in the service description and what
should be omitted can vary from case to case and is therefore very difficult to
determine in a generic way. In our case, however, the expression power provided
by the SC protocol framework was sufficiently apt and adequate.



5.4. CASE TWO: INTERMEDIARY 101

5.4.5 Comparison with WSDL & BPEL

To get a better understanding of the strengths and weaknesses of SSDL com-
pared to the incumbent approaches, we re-modelled the case presented in this
section using WSDL and BPEL. We used WSDL to define the service interfaces
and BPEL to model the intermediary’s protocol.

On the one hand we selected BPEL because it has emerged as the de facto
standard for describing workflows. On the other hand we chose it because in
addition to modelling executable processes, it can also be used to describe inter-
action protocols as so called abstract processes. The idea of abstract processes is
to describe the message exchange behaviour of a Web Service without revealing
details about its internal behaviour. As a consequence, abstract processes con-
tain less information than their executable counterparts and can for that reason
not be executed. Since our aim was not to implement the intermediary service
using BPEL, but to capture its messaging, we used BPEL’s abstract notation
for modelling it.

5.4.5.1 WSDL

First, we created the WSDL files for the requestor, the intermediary and the val-
uation firms as all three descriptions were needed for writing the BPEL process.
Instead of writing the WSDL files manually, we defined the service interfaces in
C# and used WCF to generate the desired artefacts. Since the XML schema
was the same as in the previous experiments, we re-used the data and message
contracts we had created earlier. The intermediary service’s C# interface is
shown in Figure 5.14. Instead of using Soya’s Mep attributes, however we used
the OperationContract attributes provided by WCF. Because the intermediary’s
protocol is based mostly on interactions that span more than two messages, we
were unable to capture them using WSDL’s operation-centric model. As a re-
sult, we modelled all interactions except one as one-way operations. By doing
so, we inevitably lost most of the information about the protocol. In a similar
way, we specified the requestor and the valuation firms interfaces. Then, we
generated the WSDL files.

Next, we added the relationships between the intermediary, requestor and
valuer to the intermediary’s WSDL file as shown in Figure 5.15. Although this
created dependencies between the intermediary’s service description and the
other parties, we had to add this information as we referred to it later on from
the BPEL description.
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public interface IIntermediaryService {

[OperationContract(Name="ProcessValuationRequest", IsOneWay=true)]

void Process(ValuationRequestMsg msg);

[OperationContract(Name="ProcessStatusRequest")]

StatusMsg Process(StatusRequestMsg msg);

[OperationContract(Name="ProcessCancelValuation", IsOneWay=true)]

void Process(CancelValuationMsg msg);

[OperationContract(Name="ProcessStatus", IsOneWay=true)]

void Process(StatusMsg msg);

[OperationContract(Name="ProcessFeeChangeRequest", IsOneWay=true)]

void Process(FeeChangeRequestMsg msg);

[OperationContract(Name="ProcessValuationResponse", IsOneWay=true)]

void Process(ValuationResponseMsg msg);

}

Figure 5.14: The intermediary’s service interface defined using WCF’s program-
ming model and C# attributes.

<wsdl:definitions

targetNamespace="http://www.lixi.org/Valuation/wsdl/Intermediary"

xmlns:r="http://www.lixi.org/Valuation/wsdl/Requestor"

xmlns:v="http://www.lixi.org/Valuation/wsdl/Valuer">

...

<plnk:partnerLinkType name="RequestorPartnerLink">

<plnk:role name="Requestor" portType="r:RequestorService"/>

<plnk:role name="Intermediary" portType="IntermediaryService"/>

</plnk:partnerLinkType>

<plnk:partnerLinkType name="ValuerPartnerLink">

<plnk:role name="Valuer" portType="v:ValuerService"/>

<plnk:role name="Intermediary" portType="IntermediaryService"/>

</plnk:partnerLinkType>

</wsdl:definitions>

Figure 5.15: The partner link definitions added to the intermediary’s WSDL file
defines the relationship to the requestor and valuation firm.
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5.4.5.2 BPEL

The challenges in expressing the protocol using BPEL were the same as before:
Communication with multiple parties; concurrent and synchronised communica-
tion with requestor and valuation firms; concurrent interactions with multiple
valuation firms; dynamic determination of number and location of valuation
firms.

Identifying the party with which the intermediary communicated with was
addressed directly by BPEL’s partnerLink attributes. The following code snip-
pet, for example, defines that the initial valuation request comes from the re-
questor2:

<receive partnerLink="Requestor" portType="i:IntermediaryService"

operation="ProcessValuationRequest" variable="ValuationRequest"/>

In order to express the fact that a requestor can communicate with the
intermediary concurrently with the latter’s interactions with valuation firms,
we used a flow activity, which is used to specify that one or more activities are
performed concurrently:

<flow>

communication with requestor...

communication with valuation firms...

</flow>

Modelling multiple interactions with multiple valuation firms was facilitated
using a forEach activity. The loop iterates through a list of endpoints that
can be retrieved dynamically from an external source [144]. Enabling the ac-
tivities’ parallel attribute expresses that its contained activities are executed
concurrently:

<forEach counterName="ValuationFirms" parallel="yes">

<invoke partnerLink="Valuer" inputVariable="ValuationRequest".../>

...

</forEach>

Although we were able to solve the problems considered difficult in the first
place in a relatively straightforward manner, we were confronted with a number
of other problems that arose whilst trying to describe the rest of the protocol.

We had difficulties in representing the iterations that the business protocol
prescribed. It turned out that BPEL cannot represent processes where parts

2The complete BPEL process can be found in Appendix 7.3
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of it need to be executed repeatedly without any restrictions in regard to the
number, location and nesting of these points [122]. Although BPEL offers re-
peatable constructs such as while, repeatUntil, forEach or eventHandlers, they
can only capture structured cycles (i.e. loops with one entry and one exit point).
Representing arbitrary cycles using control links is likewise not possible because
the BPEL specification does not allow such links to cross the boundaries of re-
peatable constructs3. Similarly, the same restriction prevented us from synchro-
nising between concurrently running loops, such as, for example, terminating
the running interactions with valuation firms as soon as the requestor cancelled
a valuation. The only option BPEL offered to “synchronise” among concur-
rently running loops in that case was the exit activity, which can be called from
anywhere within the process and which terminates all activities immediately.
Because, according to our business protocol, cancelling a valuation implied ter-
minating the conversation altogether, we were able to use this unstructured
workaround. If, however, the protocol had specified further activities after the
cancellation, we would not have been able to describe this part of the protocol
at all.

In the end, we modelled the iterations using an infinite while loop. Inside the
loop we nested a pick activity that expressed a choice among several possible
events. In every iteration, the process effectively stops when it reaches the pick
activity and waits for one of the possible event to occur (i.e. one of the incoming
messages to arrive). Upon arrival of a StatusRequestMsg, for example, some
activities are executed and the process loops back to the pick activity where it
waits again for the next message. After receiving a CancelValuationMsg, on the
other side, the process does not loop back to the beginning of the while loop,
but is terminated by an exit activity instead:

<while>

<condition>true</condition>

<pick>

<onMessage inputVariable="StatusRequest" ...>

...

</onMessage>

<onMessage inputVariable="CancelValuation" ...>

...

<exit/>

</onMessage>

</pick>

</while>

In a similar way, we modelled the iterations between the intermediary and
the valuation firms. In that case, however, the process exited either after all

3OASIS, “Web Services Business Process Execution Language Version 2.0”, Static analysis
requirement [SA00070]
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valuation firms had declined the request or as soon as a valuation response had
been received. Again, we were able to employ the exit activity only because no
further activities were recorded in the business protocol.

A further difficulty was the fact that the notations provided by BPEL are
very execution focused. It would have been more helpful if we could have de-
scribed what kind of interactions could occur rather than how they should hap-
pen. For example, expressing the fact that a FeeChangeRequestMsg can be
followed by a FeeChangeAcceptedMsg or a FeeChangeRejectedMsg required us
to describe how this is done using an if-else construct. Although abstract BPEL
makes it possible to masquerade conditional expressions using placeholders, we
thought that the result looked a bit awkward if used in a service description:

<b:onMessage variable="FeeChangeRequest" ...>

<b:if>

<b:condition>some business condition</b:condition>

<b:invoke inputVariable="FeeChangeAccepted" .../>

<b:else>

<b:invoke inputVariable="FeeChangeRejected" .../>

</b:else>

</b:if>

</b:onMessage>

Unfortunately, we did not find a way to model interactions that were trig-
gered outside the scope of the workflow by, for example, humans or other ele-
ments that could not be captured in the workflow directly. In fact, it has been
known for some time that BPEL does not allow the definition of human-based
activities [146]. Hence, it was not possible to describe that at any point after
sending a valuation request to a valuation firm, the intermediary could send an
enquiry about the status of the valuation. Similarly, it was not possible to model
that the intermediary can send status updates to the requestor at quite random
intervals. Again, it essentially came down to what we have described in the
previous paragraph: BPEL expected us to describe how something happened.
Unfortunately, in this case we only knew that at some point the intermediary
could, for example, send a status request, but we had no means of determining
how or why or when this would happen.

5.4.6 Discussion

The operation abstraction is the only means that WSDL alone provides for
describing how messages relate to each other. For that reason, WSDL cannot
be used to capture workflows or parts thereof that span more than two messages.
As a result, we had to model most interactions as one-way operations. Apart
from the service’s incoming messages, this unfortunately resulted in the loss
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of most protocol-related information. Thanks to WCF’s programming model
and tool support, the procedure and effort for creating a WSDL description
was similar to generating an SSDL contract. Nevertheless, the resulting WSDL
file was disproportionately verbose, considering that it contained only the most
basic information about the service. As a matter of fact, Table 5.3 shows that
the intermediary’s WSDL file was more than 3 times longer compared to the
same information expressed in the SSDL contract.

As a result, other languages such as BPEL have to be used in addition
to WSDL in order to capture a service’s messaging behaviour. Compared to
other process languages, BPEL is very expressive and powerful when it comes
to describing executable workflows [116]. Yet its many constructs and different
ways to implement things also make it a very complicated language that is
difficult to use. Although BPEL has been widely used and undeniably emerged
as the de facto standard for specifying executable processes, some researchers
claim that it has failed as a language for modelling abstract processes [100].

Through our experiments, we have come to a similar conclusion, namely
that the requirements for a language to capture an executable process and an
abstract process are different. Addressing them using different languages might
consequently be beneficial. In our experiments, BPEL’s execution-centric fo-
cus was obstructive for describing the intermediary’s protocol. The result was
a complicated, verbose protocol description that did not have a lot of resem-
blance with the original business protocol. Even though certain activities or
conditions can be masqueraded in abstract BPEL, we do not believe that it is
useful to have conditional constructs and the like in Web Service descriptions,
as this unnecessarily increases their complexity and makes it harder for service
consumers to reason about it.

Despite prior experience with BPEL, it took us a considerable amount of
time to conceive the protocol description. On the one hand, the language’s
many construct offerings made it difficult to choose the most appropriate one.
On the other hand, the BPEL specification imposes a lot of restrictions that
became only apparent to us by thoroughly reading it several times. For example,
in our first attempt to model the protocol, we used eventHandlers to process
incoming messages and control links to synchronise between them. Only after
we had implemented the protocol, we realised that BPEL does not allow control
links to cross boundaries of eventHandlers, thus making our first solution invalid.
Still, despite all the complexity and expression power BPEL offers, we did not
succeed in capturing the complete business protocol.

The fact that BPEL is dependent on WSDL additionally adds weight to
its complexity. In order to describe the protocol in BPEL, we had to modify
the intermediary’s WSDL description and add references to the requestor’s and
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Artefact WSDL & BPEL SSDL & SC

valuer.wsdl 112

intermediary.wsdl 130

requestor.wsdl 73

intermediary.bpel 128

intermediary.ssdl 49

intermediary.sc 56

TOTAL LOC 443 105

Table 5.3: Comparison of lines of code required to describe intermediary’s pro-
tocol using WSDL & BPEL or SSDL using the SC protocol framework.

valuation firms’ WSDL files. As a result, this did not only couple the intermedi-
ary’s service interface to the other parties, but also required their WSDL files to
be present, in order for specifying the intermediary’s process. In contrast, the
only abstractions necessary for describing the protocol using the SC protocol
framework were the messages that the intermediary sent and received. However,
there was no need to reference the valuation firms’ or requestor’s service descrip-
tions in order to capture the message exchanges with them. This complexity is
reflected in Table 5.3 which summarises the lines of code that were necessary to
capture the service description using either approaches4. As we can see there
was almost 4.5 times more code involved for achieving the same result using
WSDL and BPEL compared to SSDL and SC. This is even more remarkable as
we were not able to represent the protocol as precisely with BPEL as we were
with SSDL.

5.5 Conclusion

Our experiments have shown that there are situations where SSDL can have sig-
nificant benefits in describing Web Services compared to incumbent approaches
such as WSDL in conjunction with BPEL. We have found that SSDL can be
a more natural choice in terms of business-to-technology mapping as well as
in terms of adhering to service-oriented design principles. Further, it is a more
lightweight language requiring less code and its declarative approach has evident
benefits in describing business protocols. Still, we do not question BPEL’s po-
sition as a language to model executable processes. We think quite contrariwise
that BPEL and SSDL can complement each other. BPEL can be used internally
to model processes while SSDL captures the external interactions other services
have with the process.

4Excluding comments or documentation; lines were broken at 100 characters per line.
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We therefore postulate that more experiments and research should be un-
dertaken in this area in order to confirm our findings in more general terms.
We think that SSDL’s protocol frameworks in particular can still be improved
significantly. Although we have mainly investigated the MEP, Rules and SC
protocol frameworks, we believe that of all four initial releases, the SC proto-
col framework deserves most attention. In order to establish a standard that
enjoys broad acceptance and support, we further advance the view that even-
tually the protocol frameworks should converge into a single standard. A lot of
research is currently being undertaken in the area of workflow languages (e.g.
[96, 115, 90, 116, 112]) among which some also investigate declarative approaches
for describing protocols [94]. Applying the results of this research to SSDL’s pro-
tocol frameworks could be beneficial by making them more expressive, powerful
and hence, ultimately, more widely applicable.



Chapter 6

Discussion

The development of Soya has provided us with valuable insights into message-
oriented service development and the SSDL specification. Furthermore, we have
gained solid experience of extending a contemporary Web Services platform. In
this section we therefore discuss some of the findings and experiences we have
made in this respect.

6.1 State Machine Expression Power

The fact that Soya internally uses a state machine for modelling protocols has
implications in terms of what class of protocol languages it can represent. As
we have seen earlier, SSDL’s protocol frameworks define protocol languages
using XML. The fact that XML is not only a context-free (i.e. non-regular) lan-
guage [143], but can also be used for describing its own structure [73], makes it
possible to create languages that exceed the expression power of state machines.
The following is a classical example of a context-free language that cannot be
represented with a state machine. It defines that a number of x symbols must
be followed by the same number of y symbols (this could, for example, be used
to match opening and closing parentheses):

A→ xAy | ε

Indeed, the Sequencing Constraints SSDL protocol framework [98] makes it
possible to define such structures as illustrated in the following example:

<sc:protocol name="A">

<sc:choice>

<sc:sequence>

<ssdl:msgref ref="m:x" direction="in" />

109
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<sc:protocolref ref="A"/>

<ssdl:msgref ref="m:y" direction="out" />

</sc:sequence>

<sc:nothing />

</sc:choice>

</sc:protocol>

Given its state machine abstraction for capturing protocols, Soya can there-
fore not process these kinds of protocols. At the current stage it is unclear
whether this implementation limitation has significant drawbacks in practice,
or if the definition of non-regular protocols is rather unusual and can thus be
momentarily ignored.

6.2 State Maintenance using WS-Addressing

The WS-Addressing specification [13] suggests that endpoint references may be
used to identify specific instances of a stateful service. As discussed in Sec-
tion 4.3.1, we did not implement this approach, because it implies the use of
custom and thus non-standardised headers, as shown below:

<wsa:EndpointReference xmlns:wsa="..." xmlns:c="urn:custom:schema">

<wsa:Address>http://...</wsa:Address>

<wsa:ReferenceParameters>

<c:MyId>6B29FC40-CA47</c:MyId> // non-standard element

</wsa:ReferenceParameters>

</wsa:EndpointReference>

Instead, we chose to correlate messages solely based on MessageID and Re-
latesTo headers. While this approach uses standardised headers, it likewise has
a number of implications. Message sequences, for example, which are logically
connected in this way are harder to keep track of, since the session identifier
does not remain constant during the lifespan of a conversation. However, there
is a simple solution to this problem, because nothing prevents service imple-
menters from generating invariable session ids internally. These unchanging ids
can then be used for logging, auditing and other purposes that require some
degree of consistency.

6.2.1 Uniqueness of MessageID

A more problematic issue is related to ensuring uniqueness of message ids. As
discussed in Section 4.3.2, we associate internal state with the MessageID value
of the last processed message. Consequently, we need to ensure that no two
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concurrent conversations send or receive messages with equal MessageID val-
ues. While it is possible to ensure uniqueness for locally generated message ids,
it is not for those generated externally by other services. In fact, every incom-
ing message that starts a conversation contains a MessageID value that was
generated by a source that cannot be trusted. As a result, messages might be
correlated incorrectly and internal state exposed to a wrong client. One could
argue that this problem likewise exists when using locally generated constant
session ids. Indeed, a service could try to hijack other sessions, by guessing
their session ids. Yet this could only happen in the case of an attack and not
by mere accident, because the session ids are always generated locally and their
uniqueness can thus be guaranteed. Then again, session ids based on MessageID
tend to be exposed to potential attacks for a shorter period of time, because
they change every exchanged message. The point that we want to make here is
that we believe this topic deserves some attention and further research, if the
mechanism is to be used in production environments.

6.2.2 Multi-Party Conversations

Another issue related to the one above arises when a conversation spans more
than two services. Obviously, in this case the likelihood that two services gener-
ate the same MessageID increases with the number of participants. In addition,
we can also no longer create single logical conversations by sequentially connect-
ing messages using ids only, because services not aware of message exchanges
between other services might experience gaps in the sequence. The following
example shows a conversation that involves three services A, B and C. S(x, y)
means that service S receives an incoming message with MessageID x, which
relates to a previous message y. We assume that the first incoming message
received by service B was sent by A.

B(1), A(2, 1), B(3, 2), C(4, 3), B(5, 4), A(6, 5) . . .

The problematic elements are C(4, 3) and A(6, 5). In the first case, service
C receives a message from B that relates to a previous message unknown to
C, because the two services had not exchanged messages yet and the related-to
message was actually used in the conversation between A and B, not B and
C. In the latter case, A similarly receives a message that relates to a previous
message that it does not know. Although in this case, A had communicated with
B previously, the last message that it remembers actually had a MessageID of
value 3, not 5.

Consequently, this issue needs to be addressed if Soya’s component for state
maintenance and message correlation is to be used for multi-party interactions.
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One possible solution could be to have separate conversations between exactly
two parties only and then aggregate them into a single logical conversation.
However, we have not fully investigated the implications of this proposal.

6.3 Defining Protocols using Attributes

Despite the benefits of C# attributes, we see two main drawbacks to their use.
First, defining complex interaction protocols can result in a large number of
attributes that can interfere with the readability of the actual program code.
Second, because the service’s messaging behaviour is no longer separated from
the source code, changing the former implies recompiling the latter. Although
this was not an issue during our investigation, we understand that it can be
one for other projects. Especially in large enterprise projects, recompiling and
deploying application code often triggers a large number of additional activities
(e.g. automated or human-driven tests, sophisticated deployment mechanisms,
management approval, etc.) which might incur a considerable amount of time
and cost.

6.4 SOAP Action Semantics

The SOAP action attribute is neither properly defined in the SOAP specification
nor consistently used across different SOAP engines. As a result, this can cause
interoperability problems between services running on different SOAP middle-
ware. Moreover, the common practice of using internal service operation names
as SOAP action attribute values leaks implementation details and is ambiguous
when overloading service methods. In our opinion, this attribute is thus super-
fluous. In fact, we have shown that messages can be dispatched correctly and
unambiguously without using the SOAP action attribute.

6.5 WSDL Operations

We believe that WSDL’s focus on operation is obstructive for creating loosely
coupled service-oriented applications. Although WSDL certainly can be used
and, in fact, is used to build such applications, the operation abstraction encour-
ages the construction of RPC-like systems. Indeed the operation-abstraction led
many tool vendors to create software which spurs developers to generate WSDL
from existing application objects and interfaces, which subsequently leads to
tightly coupled and brittle systems. In contrast, we have shown that Soya and
SSDL provide operation-agnostic programming abstractions that encourage and
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support developers thinking in terms of message exchanges between services and
thus automatically averts the creation of RPC-like applications.

6.6 Asynchronous Interaction Model

Besides the impact that asynchronity has on the programming model (see Sec-
tion 2.2) it also affects the way services connect to each other. Because response
messages from services to clients are not sent back over the same connection (see
Section 4.6.2), clients must be exposable via public endpoint addresses in order
to receive responses. In a large number of settings this poses a problem, because
clients are behind firewalls in private networks and thus not directly accessible
from outside. Until IPv6 [147] will provide an address space large enough to
directly address every device connected to the Internet, we do not see an ideal
solution for solving this problem. Although workarounds exist for certain situ-
ations, they do not work universally. In order to support long-running transac-
tions over HTTP, for example, current practice in (synchronous) Web Service
development suggests that services repeatedly send HTTP 200 - Accepted mes-
sages back to clients, so that a connection can remain open over an extended
period of time, until a response is sent back. This solution, however, does not
scale well, because a large number of connections must be kept open at the same
time. In fact, the number of connections that need to be maintained grows with
the number of clients that use the service. The asynchronous communication
behaviour of Soya and SSDL, on the other hand, requires opening an addi-
tional connection for sending back the response, which incurs some overhead
compared to using one connection only. Nevertheless, this overhead is constant
and consequently not affected by the number of connecting clients. As a result,
this solution actually scales better, because a constant amount of additional
hardware would neutralise the performance penalty caused by the overhead of
opening the additional connection.

6.7 Assuming SOAP Only

SSDL praises itself for being simpler and more concise than WSDL as a result
of assuming SOAP as the only means for transferring messages. Indeed, it cuts
the number of lines of code necessary to describe a service by a factor of approx-
imately two, because it does not require concrete binding code. Yet we believe
that this increase in simplicity unnecessarily constrains SSDL’s flexibility for
two reasons. First, there is a growing number of Web Service applications that
do not employ SOAP as the standard mechanism for communication. At one
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end of the spectrum, applications might be based on REST principles and use
plain XML to convey data among each other. At the other end, performance
critical systems such as mobile devices or sensor networks might favour a more
lightweight or binary message format in order to reduce message size and pro-
cessing overhead. By supporting SOAP only, however, SSDL shuts itself off
from being used by this class of applications. Second, although the reduction of
complexity appears quite significant in terms of lines of code, it is not so much in
terms of development effort. This is because specifying the binding data, which
becomes unnecessary when assuming SOAP only, is a straightforward and me-
chanical task, which can easily be automated. Moreover, we think that the
benefit in terms of readability is not as significant as claimed by SSDL, because
the binding and logical service information could be separated from each other.
For these reasons, we think that it would make sense if SSDL assumed SOAP as
the default means of transferring data and optionally allowed specifying other
message formats. An additional binding attribute at the contract, endpoint,
protocol or message level would ensure the flexibility of using alternative mes-
sage formats without adding significant new complexity to the language. The
following lines show how we could, for example, define two endpoints that use
SOAP and a binary message format, respectively:

<ssdl:contract xmlns:ssdl="urn:ssdl:v1" targetNamespace="urn:my:contract">

<ssdl:schemas...

<ssdl:messages...

<ssdl:protocols...

<ssdl:endpoints>

<ssdl:endpoint xmlns:wsa="...">

<wsa:Address>http://my.service.com/default</wsa:Address>

</ssdl:endpoint>

<ssdl:endpoint binding="urn:my:binary" xmlns:wsa="...">

<wsa:Address>http://my.service.com/binary</wsa:Address>

</ssdl:endpoint>

</ssdl:endpoints>

</ssdl:contract>

6.8 Content-Based Message Dispatching

We believe that message dispatching based on message type and conversation
state can be a very useful tool (see Section 4.6). Taking this idea further and
applying it at the message content level therefore seems like a natural extension
of the mechanism and a likewise useful proposition. Indeed, such a mechanism
would have been helpful during our case study (see Chapter 5). The protocol
state machine in Figure 5.3 defines a transition symbol s′ (i.e. an incoming
Status response) that makes the state machine transit to its final state. Yet
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by scrutinizing the actual business protocol it becomes apparent that only a
declined status response can actually trigger this transition. Indeed, capturing
this information in the protocol is not possible. As a result, the validation
and dispatching logic for this particular part had to be implemented inside the
application code. If Soya or SSDL had offered a mechanism to validate and route
messages based on content, this would not have been necessary. The following
code is a suggestion for how content-based message dispatching and validation
could be facilitated in Soya’s MEP programming model. An additional attribute
could take an XPath [148] expression, which then could be evaluated at runtime:

[Mep(Style=MepStyle.InOnly, Content="/Status/Name = ’Declined’")]

void Process(StatusMsg msg);

Whether this additional information should be propagated to the exposed
contract, however, is debatable. We have discussed this to some extent in ear-
lier chapters and think that it would add too much complexity to the exposed
protocol description. Moreover, we doubt that this additional information could
actually be leveraged in a sensible or unambiguous manner by protocol-aware
software. Internally, however, we believe the additional information could prove
useful, as we have just described.

6.9 SSDL Faults

While implementing Soya, we realised that the SSDL specification expects that
runtime values such as fault codes, fault reasons and so forth are defined in-
side the ssdl:fault element as part of the service contract. We argue that it is
generally not possible to know all possible fault values in advance (e.g. codes,
subcodes, reasons, etc.). Even if so, we do not consider it good practice to enu-
merate all possible infrastructure faults in the contract – possibly even region
and language dependent.

We believe that there is an important distinction between infrastructure
faults and application exceptions; and that the latter should not be transmitted
as SOAP faults. SOAP faults should be used to signal a problem that has
occurred in the underlying infrastructure. An example for an infrastructure fault
could be a SOAP node that was not able to process a SOAP header block. An
application exception, on the other side, is a regular SOAP message containing
application data. It is up to the application or message processing logic to
interpret the message as an application exception. An OutOfStock message, for
example, is clearly an application exception, not an infrastructure fault, and
should consequently not be transferred as a SOAP fault.
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Unfortunately, there does not seem to be general consensus on the topic,
neither in the Web Services nor in the SSDL space. In both, the SOAP [11] and
SSDL [149] specifications we can find examples that transfer application-level
information as infrastructure faults (i.e. SOAP faults).

Given our experience developing enterprise Web Services, we conclude that
it is bad practice to transmit application data within infrastructure faults. Still,
given the fact that SSDL ultimately exists to describe SOAP messages, we
understand that it needs to support the description of those faults. We thus
propose a change in the structure of the ssdl:fault element to the following,
where detail refers to an element defined in the SSDL schemas section:

<ssdl:fault name="xs:string">

<detail="xs:QName"/>

</ssdl:fault>

As a matter of fact, this is how we have implemented it in Soya. Moreover,
we have provided feedback to the SSDL specification maintainers as well as the
wider SSDL community on this matter.

6.9.1 Fault XML Schema

In addition to the changes above, we propose two further modifications that
relate to the ssdl:fault element. First, the way this element is currently defined
does not allow for the specification of header elements for faults. In order to
maintain consistency between the definition of ssdl:message and ssdl:fault as
well as giving developers full control over defining the structure of expected
SOAP faults, we suggest that this should be considered in a future version of
SSDL. Second, we think that referencing faults using a separate element would
not only increase readability of protocols but give protocol framework designers
better control in specifying protocol languages. For example, the robust-in-only
MEP is currently defined as follows:

<mep:robust-in-only>

<ssdl:msgref direction="in" />

<ssdl:msgref direction="out" /> +

</mep:robust-in-only>

In this definition, it is neither visible nor can it be checked using simple
XML Schema validation that the second element actually must refer to a fault,
not a message. As shown below, using an ssdl:faultref element instead makes it
possible to use XML Schema validation, improve readability and remove confu-
sion:



6.9. SSDL FAULTS 117

<mep:robust-in-only>

<ssdl:msgref direction="in" />

<ssdl:faultref direction="out" /> +

</mep:robust-in-only>





Chapter 7

Conclusions

} The fact that man knows right from wrong proves his intellectual
superiority to other creatures; but the fact that he can do wrong

proves his moral inferiority to any creature that cannot. ~

— Mark Twain

Over the years, paradigms and best practices for building distributed software
systems have changed and evolved many times, requiring software architects
to continuously adapt both technology and mindset. Yet despite the variety
in distributed software technologies, products and paradigms that have been
created over time, most of them are based on interaction models that have
their roots in either RPC or asynchronous messaging communication. Intu-
itively, choosing a particular interaction model has a number of consequences
on the general application design. RPC-based approaches attempt to shield the
network and provide developers with familiar programming abstractions based
on operation invocation semantics. Unfortunately, RPC applications tend to
be tightly coupled, brittle at distribution boundaries and limited in scalability.
Messaging, on the other side, is well suited for integrating applications in a
loosely coupled and scalable way. Traditional messaging approaches, however,
require centralised infrastructure, which has been a major practical obstacle for
integrating components across organisational, trust or geographical boundaries.

In recent years, service-oriented architecture (SOA) has attracted consider-
able interest as an architectural style for building Internet-scale applications.
SOA decomposes applications into autonomous units of logic called services. In
accordance with the above, services use message passing as the fundamental
abstraction for communicating and exchanging structured information among
each other. Web Services are a suitable technology platform for realising service-
oriented applications. Moreover, they address interoperability and integration
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issues, which have often failed traditional messaging approaches. Yet we ac-
cepted in this thesis that simply using Web Services technology will not auto-
matically lead to service-oriented design. In particular, we argued that WSDL’s
operation-centric design encourages Web Service developers to construct appli-
cations that are architecturally indifferent from RPC systems. We furthermore
reasoned that WSDL is too complex, produces overly verbose service descrip-
tions, provides insufficient control over SOAP messages and is unable to capture
message ordering constraints over and above simple request-response patterns.

In contrast, the target for our empirical work used an alternative Web Service
description language called SSDL. Because of its focus on one-way messages as
the primary means for communication, we suggested that SSDL naturally fosters
loosely coupled, scalable and service-oriented design.

7.1 Summary of Work Undertaken

Given the lack of tools and empirical data for using SSDL as part of Web
Services-based SOAs, we identified the need to investigate SSDL’s practicabil-
ity and usefulness through empirical work. To that end we developed Soya, a
programming model and runtime environment for creating and executing SSDL-
based Web Services, respectively. We presented programming abstractions that
not only allow developers to build SSDL services in a straightforward way but
also encourage the creation of truly service-oriented applications without im-
posing unrealistic development burdens. Furthermore, we provided a detailed
explanation of how we leveraged a contemporary SOAP engine by adding func-
tionality and semantics related to SSDL, thus providing an advanced runtime
environment for executing SSDL-based Web Services to the community. In order
to validate the usability of Soya’s programming model and the proper function-
ing of its runtime environment, we mobilised Soya to create a service-oriented
system in the context of the Australian lending industry.

In summary, the following contributions to the field of software research have
been made as a result of this thesis:

1. a design and implementation of a programming model and runtime envi-
ronment for creating and executing SSDL-based Web Services, respec-
tively. This serves as a knowledge framework for better understand-
ing message- and service-oriented Web Service development (i.e. MEST,
SOA);

2. a demonstration of SSDL’s practicability in terms of implementation and
usability;
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3. a case study and subsequent comparison with incumbent approaches, pro-
viding an initial set of empirical results assessing SSDL’s characteristics.

7.2 Summary of Findings

The development of Soya and its subsequent use in a case study has provided
a valuable insight into message- and service-oriented Web Service development.
In addition, this has provided an initial set of empirical results with respect
to some of SSDL’s characteristics. First, by creating straightforward program-
ming abstractions and advanced runtime support, we have demonstrated that
the ideas underlying SSDL are realisable in practice. We have conceived and
implemented straightforward programming abstractions based on C# attributes
that make it possible to create SSDL-based Web Services without imposing sig-
nificant additional development burdens. By leveraging a contemporary SOAP
engine with SSDL-related functionality and semantics we have created unprece-
dented runtime support for executing SSDL-based Web Services. This infras-
tructure processes incoming and outgoing SOAP messages and ensures contract
conformance in terms of their structure and ordering. Furthermore, it lever-
ages protocol information and features advanced facilities for correlating and
dispatching both incoming and outgoing messages.

Second, our experience has confirmed that Soya and SSDL’s insistence on
message passing as the primary abstraction for communication naturally leads
to loosely coupled, scalable and service-oriented design. In addition, we realised
that SSDL’s asynchronous communication model is highly suitable for business
processes that require human interaction. Indeed, the valuation firms in our
case study illustrated that companies sometimes might not have the necessary
transaction volume, time, budget and so forth to fully automate a given process.
Instead, they might choose humans to process certain tasks. Soya and SSDL
make it easy to create Web Services that delegate incoming messages to humans
for processing. From outside, this is neither visible nor relevant and thus makes
it possible that such companies can still participate in automated processes that
exceed their organisational boundaries. Third, we have not only maintained that
the operation abstraction is obstructive for achieving service-oriented designs,
but showed that it is not needed in service descriptions. Fourth, our initial
results suggest that SSDL service descriptions are significantly less complex in
comparison with the results obtained from using prevalent approaches. In our
case study, for example, the lines of code were cut by a factor of almost 4.5.
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7.3 Directions for Future Work

Although our case study has provided an initial set of results in regards to vari-
ous aspects of SSDL, we would like to see Soya being used as a research vehicle
in further, more systematic empirical investigations and case studies. This is
necessary to confirm our initial results using stronger empirical evidence. It
needs to be applied to a larger sample and in different fields to discern explic-
itly which features are idiosyncratic to the current field and which are germane
across the discipline of software engineering, contextually rich though the case
studies were.

Also, the area of protocol research is still an active and hotly debated one.
Many languages and models for describing protocols currently exist. Yet it
is often unclear whether differences among them are fundamental or merely
syntactic in nature. As a result, little can be said about the usefulness of SSDL’s
initial protocol framework choices. We believe that the strongest advantage of
the Sequencing Constraints SSDL protocol framework is its claimed link to a
formal model (i.e. π-calculus) that has been thoroughly researched for more
than a decade. In terms of extending Soya and creating further tool support,
we consequently argue that conceiving sensible programming abstractions for
this protocol framework ought to be a priority.

Realistically, we do not believe that SSDL will replace WSDL in the near
future for two reasons: First, WSDL has been firmly established as a standard
and a vast amount of money has been spent in creating related tooling. Second,
despite its flaws, WSDL can still be used to create applications that adhere to
service-oriented design principles – if developers make the right decisions. Yet
even if SSDL will not replace incumbent Web Service description or protocol
languages, we hope that our work will help in leading future Web Service de-
velopment practices in a more message-oriented direction, ultimately resulting
in better distributed applications.
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Appendix

SSDL Contract with MEP Protocol

1 <ssdl:contract targetNamespace="http://www.lixi.org/Valuation/Contract"
2 xmlns:ssdl="urn:ssdl:v1"
3 xmlns:xi="http://www.w3.org/2001/XInclude">
4 <ssdl:schemas>
5 <xi:include href="http://www.lixi.org/Valuation/" />
6 </ssdl:schemas>
7 <ssdl:messages targetNamespace="http://www.lixi.org/Valuation/Message"
8 xmlns:ns1="http://www.lixi.org/Valuation">
9 <ssdl:message name="CancelValuationMsg">

10 <ssdl:header ref="ns1:Id" mustUnderstand="false" relay="false" />
11 <ssdl:body ref="ns1:CancelValuation" />
12 </ssdl:message>
13 <ssdl:message name="StatusMsg">
14 <ssdl:header ref="ns1:Id" mustUnderstand="false" relay="false" />
15 <ssdl:body ref="ns1:Status" />
16 </ssdl:message>
17 <ssdl:message name="StatusRequestMsg">
18 <ssdl:header ref="ns1:Id" mustUnderstand="false" relay="false" />
19 <ssdl:body ref="ns1:StatusRequest" />
20 </ssdl:message>
21 <ssdl:message name="ValuationRequestMsg">
22 <ssdl:body ref="ns1:ValuationRequest" />
23 </ssdl:message>
24 <ssdl:message name="FeeChangeRequestMsg">
25 <ssdl:header ref="ns1:Id" mustUnderstand="false" relay="false" />
26 <ssdl:body ref="ns1:FeeChangeRequest" />
27 </ssdl:message>
28 <ssdl:message name="FeeChangeRejectedMsg">
29 <ssdl:header ref="ns1:Id" mustUnderstand="false" relay="false" />
30 <ssdl:body ref="ns1:FeeChangeRejected" />
31 </ssdl:message>
32 <ssdl:message name="FeeChangeAcceptedMsg">
33 <ssdl:header ref="ns1:Id" mustUnderstand="false" relay="false" />
34 <ssdl:body ref="ns1:FeeChangeAccepted" />
35 </ssdl:message>
36 <ssdl:message name="ValuationResponseMsg">
37 <ssdl:header ref="ns1:Id" mustUnderstand="false" relay="false" />
38 <ssdl:body ref="ns1:ValuationResponse" />
39 </ssdl:message>
40 </ssdl:messages>
41 <ssdl:protocols>
42 <ssdl:protocol targetNamespace="http://www.lixi.org/Valuation/Protocol"
43 xmlns:mep="urn:ssdl:mep:v1">
44 <mep:out-only xmlns:ns2="http://www.lixi.org/Valuation/Message">
45 <ssdl:msgref ref="ns2:CancelValuationMsg" direction="out" />
46 </mep:out-only>
47 <mep:in-only xmlns:ns2="http://www.lixi.org/Valuation/Message">
48 <ssdl:msgref ref="ns2:StatusMsg" direction="in" />
49 </mep:in-only>
50 <mep:out-in xmlns:ns2="http://www.lixi.org/Valuation/Message">
51 <ssdl:msgref ref="ns2:StatusRequestMsg" direction="out" />
52 <ssdl:msgref ref="ns2:StatusMsg" direction="in" />
53 </mep:out-in>
54 <mep:out-optional-in xmlns:ns2="http://www.lixi.org/Valuation/Message">
55 <ssdl:msgref ref="ns2:ValuationRequestMsg" direction="out" />
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56 <ssdl:msgref ref="ns2:StatusMsg" direction="in" />
57 </mep:out-optional-in>
58 <mep:in-out xmlns:ns2="http://www.lixi.org/Valuation/Message">
59 <ssdl:msgref ref="ns2:FeeChangeRejectedMsg" direction="out" />
60 <ssdl:msgref ref="ns2:FeeChangeRequestMsg" direction="in" />
61 </mep:in-out>
62 <mep:in-out xmlns:ns2="http://www.lixi.org/Valuation/Message">
63 <ssdl:msgref ref="ns2:FeeChangeAcceptedMsg" direction="out" />
64 <ssdl:msgref ref="ns2:FeeChangeRequestMsg" direction="in" />
65 </mep:in-out>
66 <mep:in-only xmlns:ns2="http://www.lixi.org/Valuation/Message">
67 <ssdl:msgref ref="ns2:ValuationResponseMsg" direction="in" />
68 </mep:in-only>
69 </ssdl:protocol>
70 </ssdl:protocols>
71 <ssdl:endpoints>
72 <ssdl:endpoint xmlns:wsa="http://www.w3.org/2004/12/addressing">
73 <wsa:Address>http://localhost:8081/caseOne/requestor/ws</wsa:Address>
74 </ssdl:endpoint>
75 </ssdl:endpoints>
76 </ssdl:contract>
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Sequencing Constraints Protocol

1 <ssdl:protocol targetNamespace="http://www.lixi.org/Valuation/Protocol"
2 xmlns:mep="urn:ssdl:sc:v1">
3 <sc:participant name="Req"/>
4 <sc:participant name="Val"/>
5 <sc:protocol name="Intermediary">
6 <ssdl:msgref ref="m:ValuationRequestMsg" direction="in" sc:participant="Req"/>
7 <sc:parallel>
8 <sc:protocolref ref="recurseReq"/>
9 <sc:multiple>

10 <sc:sequence>
11 <ssdl:msgref ref="m:ValuationRequestMsg" direction="out" sc:participant="Val"/>
12 <sc:protocolref ref="recurseVal"/>
13 <sc:choice>
14 <ssdl:msgref ref="StatusMsg" direction="in" sc:participant="Val"/>
15 <ssdl:msgref ref="CancelValuationMsg" direction="out" sc:participant="Val"/>
16 <ssdl:msgref ref="ValuationResponseMsg" direction="in" sc:participant="Val"/>
17 </sc:choice>
18 </sc:sequence>
19 </sc:multiple>
20 </sc:parallel>
21 <sc:choice>
22 <ssdl:msgref ref="StatusMsg" direction="out" sc:participant="Req"/>
23 <ssdl:msgref ref="CancelValuationMsg" direction="in" sc:participant="Req"/>
24 <ssdl:msgref ref="ValuationResponseMsg" direction="out" sc:participant="Req"/>
25 </sc:choice>
26 </sc:protocol>
27 <sc:protocol name="recurseReq">
28 <sc:choice>
29 <ssdl:msgref ref="m:StatusMsg" direction="out" sc:participant="Req"/>
30 <sc:sequence>
31 <ssdl:msgref ref="StatusRequestMsg" direction="in" sc:participant="Req"/>
32 <ssdl:msgref ref="StatusMsg" direction="out" sc:participant="Req"/>
33 </sc:sequence>
34 <sc:protocolref ref="recurseReq"/>
35 <sc:nothing/>
36 </sc:choice>
37 </sc:protocol>
38 <sc:protocol name="recurseVal">
39 <sc:choice>
40 <ssdl:msgref ref="m:StatusMsg" direction="in" sc:participant="Val"/>
41 <sc:sequence>
42 <ssdl:msgref ref="m:FeeChangeRequestMsg" direction="out" sc:participant="Val"/>
43 <sc:choice>
44 <ssdl:msgref ref="m:FeeChangeAcceptedMsg" direction="in" sc:participant="Val"/>
45 <ssdl:msgref ref="m:FeeChangeRejectedMsg" direction="in" sc:participant="Val"/>
46 </sc:choice>
47 </sc:sequence>
48 <sc:sequence>
49 <ssdl:msgref ref="StatusRequestMsg" direction="out" sc:participant="Val"/>
50 <ssdl:msgref ref="StatusMsg" direction="in" sc:participant="Val"/>
51 </sc:sequence>
52 <sc:protocolref ref="recurseVal"/>
53 <sc:nothing/>
54 </sc:choice>
55 </sc:protocol>
56 </ssdl:protocol>
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BPEL Process Description

1 <b:process name="intermediary"
2 abstractProcessProfile=""
3 targetNamespace="http://www.lixi.org/Valuation/bpel/Intermediary"
4 xmlns:tns="http://www.lixi.org/Valuation/bpel/Intermediary"
5 xmlns:b="http://docs.oasis-open.org/wsbpel/2.0/process/abstract"
6 xmlns:r="http://www.lixi.org/Valuation/wsdl/Requestor"
7 xmlns:i="http://www.lixi.org/Valuation/wsdl/Intermediary"
8 xmlns:v="http://www.lixi.org/Valuation/wsdl/Valuer"
9 xmlns:lixi="http://www.lixi.org/Valuation">

10 <b:partnerLinks>
11 <b:partnerLink name="Requestor" partnerLinkType="i:RequestorPartnerLink"
12 myRole="Intermediary" partnerRole="Requestor"/>
13 <b:partnerLink name="Valuer" partnerLinkType="i:ValuerPartnerLink"
14 myRole="Intermediary" partnerRole="Valuer"/>
15 </b:partnerLinks>
16 <b:variables>
17 <b:variable name="ValuationRequest" messageType="lixi:ValuationRequestMsg"/>
18 <b:variable name="FeeChangeRequest" messageType="lixi:FeeChangeRequestMsg"/>
19 <b:variable name="FeeChangeAccepted" messageType="lixi:FeeChangeAcceptedMsg"/>
20 <b:variable name="FeeChangeRejected" messageType="lixi:FeeChangeRejectedMsg"/>
21 <b:variable name="StatusRequest" messageType="lixi:StatusRequestMsg"/>
22 <b:variable name="Status" messageType="lixi:StatusMsg"/>
23 <b:variable name="CancelValuation" messageType="lixi:StatusMsg"/>
24 <b:variable name="ValuationResponse" messageType="lixi:ValuationRequestMsg"/>
25 <b:variable name="ValuationFirms"/>
26 </b:variables>
27 <b:sequence>
28 <b:receive partnerLink="Requestor" portType="i:IntermediaryService"
29 operation="ProcessValuationRequest" variable="ValuationRequest"/>
30 <b:opaqueActivity>
31 <b:documentation>Get valuation firms and store in ValuationFirms.</b:documentation>
32 </b:opaqueActivity>
33 <b:flow>
34 <b:documentation>
35 Communicate with requestor and valuation firms independently and
36 concurrently. We break out of the loops when one of the following occurs:
37 - the requestor cancels the valuation
38 - all the valuation firms declined our request
39 - we receive the valuation response from a valuation firm
40 </b:documentation>
41 <b:while>
42 <b:condition opaque="yes">we haven’t declined or sent response</b:condition>
43 <b:pick>
44 <!-- status request from requestor -->
45 <b:onMessage partnerLink="Requestor" portType="i:IntermediaryService"
46 operation="ProcessStatusRequest" variable="StatusRequest">
47 <b:reply partnerLink="Requestor" operation="ProcessStatusRequest" variable="Status"/>
48 </b:onMessage>
49 <!-- cancel valuation request from requestor -->
50 <b:onMessage partnerLink="Requestor" portType="i:IntermediaryService"
51 operation="ProcessCancelValuation" variable="CancelValuation">
52 <b:sequence>
53 <b:forEach counterName="ValuationFirms" parallel="yes">
54 <b:scope>
55 <b:invoke partnerLink="Valuer" portType="v:ValuerService"
56 operation="ProcessCancelValuation" inputVariable="CancelValuation"/>
57 </b:scope>
58 </b:forEach>
59 <b:exit/>
60 </b:sequence>
61 </b:onMessage>
62 </b:pick>
63 </b:while>
64 <b:sequence>
65 <!-- for each valuation firm -->
66 <b:forEach counterName="ValuationFirms" parallel="yes">
67 <b:scope>
68 <b:sequence>
69 <b:invoke partnerLink="Valuer" portType="v:ValuerService"
70 operation="ProcessValuationRequest" inputVariable="ValuationRequest"/>
71 <b:while>
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72 <b:condition opaque="yes">
73 we haven’t received status declined or valuation response from valuation firm.
74 </b:condition>
75 <b:pick>
76 <!-- status update from valuer -->
77 <b:onMessage partnerLink="Valuer" portType="i:IntermediaryService"
78 operation="ProcessStatus" variable="Status">
79 <b:if>
80 <b:condition opaque="yes">
81 if status is ’accepted’ and we haven’t cancelled yet.
82 </b:condition>
83 <!-- cancel all other valuation firms-->
84 <b:forEach counterName="ValuationFirms" parallel="yes">
85 <b:scope>
86 <b:if>
87 <b:condition opaque="yes">
88 if valuation firm is not the one that has just accepted.
89 </b:condition>
90 <b:invoke partnerLink="Valuer" portType="v:ValuerService"
91 operation="ProcessCancelValuation" inputVariable="CancelValuation"/>
92 </b:if>
93 </b:scope>
94 </b:forEach>
95 <b:elseif>
96 <b:condition opaque="yes">if status is ’declined’</b:condition>
97 <b:sequence>
98 <b:opaqueActivity>
99 <b:documentation>keep track of valuers that declined</b:documentation>

100 </b:opaqueActivity>
101 <b:if>
102 <b:condition opaque="yes">if all valuers declined</b:condition>
103 <b:sequence>
104 <b:invoke partnerLink="Requestor" portType="r:RequestorService"
105 operation="ProcessStatus" inputVariable="Status"/>
106 <b:exit/>
107 </b:sequence>
108 </b:if>
109 </b:sequence>
110 </b:elseif>
111 </b:if>
112 </b:onMessage>
113 <!-- fee change request from valuer -->
114 <b:onMessage partnerLink="Valuer" portType="i:IntermediaryService"
115 operation="ProcessFeeChangeRequest" variable="FeeChangeRequest">
116 <b:if>
117 <b:condition opaque="yes">some business condition</b:condition>
118 <b:invoke partnerLink="Valuer" portType="i:IntermediaryService"
119 operation="ProcessFeeChangeAccepted" inputVariable="FeeChangeAccepted"/>
120 <b:else>
121 <b:invoke partnerLink="Valuer" portType="v:ValuerService"
122 operation="ProcessFeeChangeRejected" inputVariable="FeeChangeRejected"/>
123 </b:else>
124 </b:if>
125 </b:onMessage>
126 <!-- valuation response from valuer -->
127 <b:onMessage partnerLink="Valuer" portType="i:IntermediaryService"
128 operation="ProcessValuationResponse" variable="ValuationResponse">
129 <b:sequence>
130 <b:invoke partnerLink="Requestor" portType="r:RequestorService"
131 operation="ProcessValuationResponse" inputVariable="ValuationResponse"/>
132 <b:exit/>
133 </b:sequence>
134 </b:onMessage>
135 </b:pick>
136 </b:while>
137 </b:sequence>
138 </b:scope>
139 </b:forEach>
140 </b:sequence>
141 </b:flow>
142 </b:sequence>
143 </b:process>
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